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INTRODUCTION

With the ever-decreasing prices of digital hardware and storage, it would
appear that a wave of interest in the use of digital media for storage of
high-guality audio is mounting. The current round of digital tape recorders
is but one example of this interest [fiyers and Feinberg 1972, tcCracken
1978]. Synthesis of music via computer is now a well-known practice [Meorer
1977, Hathews 19691 which is established largely in universities around the
world. Digital synthesis hardware for musical purposas is now coming to
fruition as we see several different designs for synthesizers developing
[Alles and diGiugno 1977, Alonso et al 1976]. There is even digital hardware
available for reverberation simulation on the commercial market [Blesser et
al 19753. 1t requires at this time only a small leap of faith to envision
digital processing all the way from microphone preamplifier to home
loudspealker. This being the case, it seems reasonable to ask whether the
currently popular methed of storing this data, that is, in PCH, is
necessarily the best. We clearly need good guidelines, based on percentual

studies, as to what defines quality in digitaliy coded sound.

Almost all commercial digital audio is stored in terms of PCit. The sampling
rates vary {on the commercial, high-quality units} from a Tow of about 32 KHz
[Alles and diGiugno 1977, Warnock 1976, Blesser et al 1975] to a high of 50
KHz [McCracken 1978]. The number of bits in the code word is almost
universally 16, although this is sometimes realized by converting less than
that, such as 12 bits, and using scale switching to achieve the dynamic range
[Biesser et al 1975, Kriz 1975]. There is some evidence that a higher dynamic
ranga than the potential 96d3 range of the 16-bit word might be nice, but

certsinly not econsmical at this time.

We can debate endlessly about the choice of different numbers of sampling
rates and different numbers of bits. Users of the lower sampling rates offer
that most people cannot hear above a certain frequency, and that the phase
Tinearity of digital audioc makes the lack of high frequencies much less
audible. Another argument for lower overall quality is the one often given
that most music is presented finally in home stereo systems which have

somewhat limited fidelity in themselves, or that the public at large does not
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even appreciate higher fidelity. There is always the example of automobile
music systems and portabie cassette players to fix the minimum guality
currently in use today. Other arguments by users of lower sampling rates are
that the hardware to process the higher sampling rates is prohibitively
expensive, or in the case of digital audioc tape, the data density on the tape
(typically 28,800 bits per inch) even at lower sampling rates is already at
the Timits of the technology. Any argument based on hardware cosis or
limitations will evaporate with time since the prices of digital hardware
shiow no signs of ceasing their exponentiai downward trend in the years to
come. The problem of high data densities is more fundamental, tin that higher

densities mean greater error rates.

In our own discussions with the pecple who record, make, and produce music
today, it is clear that they will not abandcn the current technology fer the

newer digital hardware until they can achisve with the same ease all th

@

things they can do with centemporary professicnal audis equipment. This is
154

(3]

quite a tall erder for digital competiticn. For example, if we do not count
the microphone preamplifiers, the specifications for medern mixing consaies
exceeds a 110 dB total dynamic range. This would imply an 18 to 19 bit svstem
which is clearly beyond the bounds of modern conversion systems today. If we
Jjust consider the tape equipment, with noise reduction devices a 99 ¢B signal
to noise ratio can often be achieved, although it is impossible to get rid of
the few tenths of & percent of 3rd harmonic distortien that is inherenty in
magnetic analog recording. As surprising as it may seem to peepie thinking
about making digital audic equipment, there are recording engineers, in the
popular music field, who are capable of distinguishing a recording frem an
identical recording with all the high freguencies above 15 KHz removed. Thus
there is reasen to believe that whatever we may think about its advantages,
digital audio will not find a large place in the professional audio marke:
until it can cempete in guality and cenvenience, although not necessarily in

price, with current professional audic systems.

Despite the raging interest in digital audio, there seems to be very little
published material on the perceptual bases for ceding schemes for

high-quality audio [Lee and Lipschutz 1976]. It is not really well known how
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much distortion the ear can tslerate or what kind of audio material should be
used to test digital audio systems. It is the purpose of this article to make
a micro-step toward not necessarily the answers to these guestions, but
toward an understanding of what are the issues are and what are the right

questions to ask.

Since our own investigaticn of this question stems from the investigation of
specific coding schemes for high-guality audio, we shall begin our discussion

with these coding schemes.
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MINIMUM-LENGTH CCDING

The fundamental idea of Huffman coding is that the numbers which represeat
(in our case) the sound samples are not evenly distributed: certain numbers
occur more frequently than others. This being the case, we can assign very
short codes to the numbers that sccur nost often, and lenger codes te the

numbers that cccur less often. This is usually accomplished in tuwo passe

5]

over the sound: g6n the first pass, a histogram is computed giving the
frequency of occurance of each numboer. From this histogram, we can comnute
the code using the method described in Huffman [1952]1. On the second pass, we
substitute the minimum-Tength code for each sample. This has the Teature

that the samples no longer take the same amount of sterage. The first seamnle

might be 2 bits long, the next semple 6 bits, and so on. The advantage of
this system is that there is no ioss of informetien. The coding schemz cen
encede any string of numbers without error, thus no guestions of

st

erceptibiiity of coding disterticn can erise.
d &

There are several disadvantages, however, to this coding schems. Cne of ths

most Tundamental 1is that the ¢

)

timum coding can ot be determined vntii one
has the entire signal available to compute the histogroem. Th2 severity of
this limitation, though, depends on the application. For recordinas which
have been made in the coaventional way but are nowr to be distributed in

digitat form, this presents no problem in that the corde can be computod

mean that the code table must be trensmitted as a preamble to the sound
samplas themselves. For doing direct digital recerding, tho statistics of ths
signals are not available beforehand, and some pre-computed table nmust be
used. This guarantees a sub-eptimal coding, ard in some cases can actually

explode the data rate above that reguired for siraight PO cediag.

To further explore the utility of sub-optimal coding, we exmbarked on an
empirical study. We coded several different digitized sansles ef svasach

computer-generated music, and live music in various differen

ok
=
]
e
»
o
3]
o
9
[
cF
©

compare the results. Furthermore, there was some suspicion that coding first

or second differences might increase the redundancy in the s
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the fact that ordinary music tends to have most of its energy in the lower
frequencies, thus implying smaller differences. This is not necessarily
true, however, of computer-generated scund. The composer of computer music

can use full-amplitude signals of any frequency.

The coding scheme we chose is, in fact, a modification of the Huffman schems,
in that for every code that takes more than the eriginal number of bits, we
substitute a special code followed by the original sample. In the worst cast,
by ccmplete mismatch of cpde and sound, the data would be increased by a
factor of two, but no more. In Table I, we show the resulis for three
different sound files with varying number of high-order bits. Our first
observations were that the histograms for positive numbers were virtually
identical to those for negative numbers, so that no additional reducticn was
cbtained by treating them differently. Thus to code the sample, we first
store the sign bit then take the absolute value. Cur next observation was
that the entropy of the low-order bits was so high that it ocnly wade sense te

code the high-order bits.

In table I, the scunds used were LS, an utterance by a male speaker in a dry
environment, PD, a piece of computer-processed music with live flute,
synthetic and natural voice, other computer effects, and simulated
reverberatiocn, and TR, a piece of computer-synthesized speech music with
reverb. The rows marked 0, 1, and 2 refer to 0th difference (no chenge), lst
differences, and 2nd difference, which is expressed mathematically as

follows:

X(n) 0th difference
X{n)-X(n-1) 1st difference
X{(n)~2X(n~1)+X(n-2) 2nd difference

These are equivalent to pre-emphasis filters and require the appropriate
de-emphasis filter for decoding. The exact inverse filters for these are
quite simple to censtruct, requiring only memery, additions, and shift

operaticns with no multiplications.
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The first question we ask is how many high~order bits does it make sense to
code? If we think in terms of a 16-bit 2's complement input sample, we can
see that in most cases, the mean sample length increses exactly in
correspondance with the number of high-order bits used. A slight eccnomy is
realized in going from 10 bits in sound file TR to 12 bits, bu% virtually no
economy is realized in going from 12 tc 13 or to 14. This implies that 12
bits is a reasscnable number of high-crder bits to use in the coding. The sicn
and the low-order 3 bits should be transmitted separately in an uncoded

format.

The next question is what order difference should be used? This seems to
depend strongly on the sound. PD, which is rich in high-freguencies, shows
the least improvement in going from 1lst to 2nd differences, but reports

nonetheless substantial improvement in going from 9th to 1st differences.

@

Since the other files show improvement in going to 2nd differences, it sesn

worthwhile to use 2nd differences universally.

The finai question we will address here is that of the loss in using
sub-optimal codes. To test this, we used four more sound files and compuied
all combinations of codings and histograms. Sound file BY was computor
synthesized bell-1ike tones with no reverberation. SC was music instrument
tones that had been analysed and synthesized using additive synthesis, then
reverberated by the ceomputer. FX is a digitel recording of a live fiute in a
very dry environment. F¥ is this same flute reverberated by direct
convolution with a synthetic concert-hall impulse resnonse of guite long
duration. FW is, in fact, very typical of popular classical recordings.
There is often a great deal of reverberation present in later classical

works.

The rows of table II are codings of different sound Tiles with a table that
has been computed as optimal for the sound file whose name is at the left.
The columns are the different codings of a given sound file. The diagonal
represents the optimal coding of a scund fiie, that is, by its own code. Ve
can see clearly that the mismatch of code to sound Tile is, in some cases,

disasterous. Coding of FW by any but its own code produces an explosion of
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the amount of data involved. The reduction by use of its own code is, in
féét, minimal and hardly worth the effort. The other sound files seem to
reduce satisfactorily, hewever, and if one can tolerate the occaisional data
expansion, then this may be jndeed a useful ceding technique. If a fixed
table must be used, we recommend using the table calculated for the sound
file PD. That secms to have the least problem with other sound files,
aithough the net reduction is only between §5 and 7 bits per sample. For
16-~bit samples, this gives between § and 11 bits for each sample for most

sounds.,

Table IIT gives the resulting codelengths for the optimal code for sound file
PO. Tie 12-bit number to be coded will be from 0 to 4095. The numbers from 0
to 454 will all have unicue cedes of 12 bits or less. Above this value, the
sample is ceded as a unigue 12-bit code (there will be cne left) followed by
the original 12-bit value. lNeotice that the progressisn is almsst expenential.,
Each range almest doubies thz number of members up to a peint. This suggests
that some form of floating-psint encoding wmight be usaful. e will discuss

this further in the next part.

There is a further inconvenicnce with the use of minimum-length encoding, and
that is the problem of error recovery and randem access. The prebiem is that
the cede is designed to be decoded by exemining the stream bit by bit and
grouping the variable numbers of bits into samples. If veu lose your place in
the bit stream, there is no way of identifying the beginning of a new sample.
This can be easily corrected by breaking the data into blocks and restarting
the cede at the beginning of ecach block, In this case, you must put up with
the fact that either each block will be a different length with a constant
nurber of samples per block, or each block will contain a fixed number of
bits with a variable number of samples. Meorecver, if ycu wish to reference a
particular sample ian the middle of a block, you must begin decscding 2t the

baginning of the block.
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Ls PD TR
0 9.079/12 10.092/13 9.547/12 11.631/14 11.303/12 9.028/18
1 5.796/12 6.597/13 7.836/12 0.860/14 5.596/12 3.807/10
2 4.966712 5.899/13 7.767/12  9.795/14 4.836/12 2.973/10

LS: Spoken utterance from male speaker

PD: Computer-generated music with flute, voice, computer sounds,

and reverberation

TR: Computer-generated synthetic voice with reverberation

Average cade lengths fer coding the high-order 10 through 14 bits of the

rectified samples for diferent sound files. The number before the sTash in

each case gives the mean semple lengih after coding. The number after the

slash is the number of high-order bits that were used. The rows marked 0, 1,

and 2 denote Oth differences (coding the sample itself}, 1lst differences, and

2nd differences.
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TABLE II

Sounds to be coded:

by SC FX Fy TR PD LS

DU 6.06% 5.956 5.892 17.320 4.948 8.526 5.044 Table used:
S€ 6.697 6.107 6.996 18.158 5.605 9.590 5.790
FX 6.581 6.526 5.833 19.546 4.974 9.798 5.305
FW¥ 8.419 8.342 8.593 11.286 8.207 8.952 8.364
TR 7.037 7.155 6.175 20.605 4.836 10.853 5.397
PD  6.383 6.201 6.196 14.727 5.552 7.767 5.649
LS 6.272 6.108 5.969 18.913 4.779 9.375 4.966

DU: Computer synthesized bell-1ike tones, no reverberation
SC: Synthetic music instrument tones with reverberation
FX: Live flute in very dry studie

FW: Same Tlute with cencert-hall reverberation

TR, PD, and LS as in table I.

Comparisen ef mean sample lengths when the code used is computed freom the
histogram for a different sound file. Each row is a code from the sound file
indicated at the left. The columns are the coding of a given sound file by
different codes. The diagonal represents the optimal coding. Ye see that in
some cases the sub-optimal coding causes an explosion of the mean sample

Yength.
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TABLE IIT

CODE LENGTH RANGE
4 0:1
5 2:5
6 6:15
7 16:33
8 34:66
9 67:126
10 127:211
11 212:329
12 330:454
24 A1l others

Optinmum code for seund PD. A1l pumbers between 455 and 4095 are ceded as a
special 12-bit code (there will ba one left) followed by the original 12 bit
sampie. This keeps a bocund on the maximum code length but causes a slignt

increase in mean sample iength.
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FLOATING-POINT CCDING.

Figure 1 shows the block diagram of the floating~point coder we have been
working with recently. Q represents the floating point gquantization and
coding itself. The inverse of Q represents decoding into integer. In the
figure, X is the input signal, Y is the coded ocutput signal, and R is the
reconstructed signal at the transmitting end. The receiver need only
duplicate the circuitry required to generate R from Y. The coefficient, a,
can be thought of as a pre-emphasis quantity. At zero, we have direct
floating-point coding, such as is used internally in the converters of Kriz
[1975]. At one, we have something resembling ADPCM coding [Jayant 1974,
Cummiskey et al 19737 but with the scale factor explicitly transmitted,
rather than inferred. This system is a special case cf the predictive coding
scheme for voice [Atal and Schreceder 1970, 1978, Makhoul and Berouti 1978].
The point of putting the quantization in the loop is so that long-term error
does not accumulate. The reconstructed signal will always cenverge to Lthe
desired value in a Tinite number of szamples. This system at a=1 is

functionally identical to that described by Samson [1978].

The flaeating-point coding scheme we are considering represents the integer
input sample as a mantissa of b binzry bits and an exponent which is almost
always 4 bits long. If we force the mantissa to always be normalized, we can
save one more bit by throwing out the sign bit, which will always be the
complement of the high-order mantissa bit. We will call this process "sign
compression.” Performing sign compression causes us a problen in
represcnting very small numbers, so we have been using as the excepticnal
case an expsnent of zero to indicate that the mantissa is not sign
compressed, but is a two's complement, right-adjusted number. In this case,
the sign must be extended to the high order bits. In sign compressed ccdes
{exponent urequal to zero) the complement of the high-order mantissa bit is
extended to the high-order bits and the resulting two’s complement werd is
shifted 1eft the number of plasces indicated by the exponent. The vacated
positicns are to be filled with zeros. By way of terminology, when we say
that a mantissa has b bits, we will mean b bits after sign ccmpression. It

would be (b+1l) bits if the sign were included explicitly.



Page 12
The question is now what values of the numbers b and a provide the greatest
compression with the Jeast amount of perceptable noise? For a given setting
of b and a, the total dynamic range representable is determined by the number
of choices of shift. For this study, we shall insist on at least a 16-bit
dynamic range, with further dynamic range considered to be icing on the cake,

i.e., desirable but not abscititely essential at this tima.
As a step toward understanding the behavior of the coding algorithm, we

performed a series of simulations of the system on a general-purpose cemnuter

with varying values of the parameters. The error was computed as follows:

2 2
N Ze(n) - (Ze(n))

(1) E =10 leg
10 2 2
N ZX{(r} - (ZX{(n))

where X(n) is the input signal at time nT, T being the sampling periodg. 24}
is the error signal, which is just (R{(n}-¥{n)), where R{n) is the

reconstructed signal.

This error measure gives us the expected rasults when the ccefficient a is
set to zero. For pure fleating point, the error is approximated by the

following:
(2) E = 6(b+1.5)
0

We have added 1.5 to the number of bits in the mantissa for two reasons. The
first is that sign compression was used universally in this study which adds
one bit to the effective mantissa length. The secend is that rounding the

signal before coding always reduced the noise level by 3dB, so that rounding
before quantizing is alsc used universally in this study. For b=8, the error
using different values of the coefficient a is shown in figure 2. The inputs
were pure sinusoids of full amplitude. We can thus expect that bh=8 gives

about 57 dB of signral-te-noise ratio (for a=0), 18 bits gives about €9 a3,
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and so on. The curves in figure 2 are only given for b=8 because other values
of b only shifted the curves up or down by 6 d2 per bit. The shapes were
identical. The "bumpy® character of the a=1 curve shows in a very evideni way
the changing of scale as the slopes of the sinusoids grow with increasing
frequency. One important thing to notice is that in no case does the maximum
error excaed the erreor for the purs floating point case {a=0) by more than 6
dB, and for frequencies less than .16 of the sampling rate, every increase ef
the coefficient reduced the error. Any value of a above 1.0 drives the

reconstruction filter unstable and is thus ccnsidered undesirable.

A1l this discussion of the coding scheme and its error may be interesting but
not terribly useful until we determire its relation to perception. At first
glance, the increasing error with increasing frecuency may ssem detrimental.
It is not clear either that sinuscids form a representative test set, that
one can generalize from pure sinusoids to musical sound. As an illustratics,
one can site the case of transient intermcdulaticn disterticon in emplifiers,
where an amplifier can function perfectiy with sinusoids but distort greaiiy
for high slew-rate transient signals. Likewise, since the coding/deceding
process is highly nenlinear, we might expect that the érver could ircrease

n

when transmitting more cemplex spectra th simnla sums of sinuscids.

We tried several different kinds of filters fer ceding and reconstructien
besides the simnle 1st order system shown here, but every attemnt gave no
appreciable gain in overall precision. ¥e could trade distortion in one
freguency regien for distortion in ansther frequency regien, but were unablie
to Find another kind of filter that unifermly reduced the distortien as did
the simple 1st order filter shown. This filter has the further advantagz that
it can be realized entirely without multiplications. Realization of the

floating-point ceder and decoder recuires nothing more than binary shif:.
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RELATION TO PERCEPTION

To begin the study of the relation of figure 2 to percention, we did informeal
tests, both physical, gedanken, and simuiated, on the effects of this kind of
coding. Yhat we seemed to be perceiving was that the extremes of frequency
vwere much more sensitive to distsrition thaa the mid freguencies. The lows
expecially were extremely sensitive. e 1ocked at the error spectira to iry
to Tind seme clue as to why this might be the case, but the error spectra
were uniforaly flat [Bznnmet 19483. They iooked much like white noise
spectra. Figure 4 shows error spectra for seven different frequencies of
sinusoids coded and decoded via this method. For the highest freauencies, or
for frequencies very close to scme integral diviser of the sampling rate,
there were sinusoidal distortiecn predunts, but they were again distributed
uniformly throughout the spectrum. They did not bunch er cluster in
particular spectral regions. This led us to believe that this difference in

sensitivity could enly be the result of a perceptual phencnencn.

To determine, at least in the steady state, vhether a given scund will be
perceptable in the presence of ancther sound, we can use the results on
loudness summation in the presence of masking. This expositicn will follow
the theories of Zwicker and Scharf [Zwicker 1958, Zwicker and Scharf 18657,
Since their theory is much too complex to give in full detail here, we will
only attempt to highlight certain of the features that are most relevant to

our discussion of perceptability of guantizing noise.

To form the loudness estimate of a sound, ws start with the gnergy in cach
critical band. For each critical band, the apprapriate masking patiern is
selected accerding to the frequency and total energy in the band [ Zviicker
19587, The masking patitern itself is taken to be representative of the
excitation pattern on the basilar membrane. The ssecific loudness is then
calculated from the masking patterns for each band by a modified power law.
We then superimpose ali the patterns for all the critical bands. These
patterns define an upper envelcpe. The integral of the specific loudness

between the threshcld curve and this envelope is then the loudness.
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What this implies is that if we then add any other scund, if it does not rise
above this upper envelope, it will not be heard. We then should be able to
predict frem the published masking patterns the perceptibility of the
quantization error. We implemenied this moede? in software to attempt to
predict Toudness and audibility [Moorer 1975, Grey and Gordon 19781. The
results were that the model could indead be adjusted to give measures of
Toudness that were consistant with experimental évidence, but the prediction
of audibility or non-audibility was Tar too sensitive to the exasi shapss of

the masking patierns and the threshoid curve to be relisble.

Happily, even in the absence of a rigorous and precise theory for this
question, we do have two experimental works along this Tine. We will take the
approach of Lee and Lipschutz [12721 in that we would like that the signai
mask the quantization error under all circumstances. Since at Tower
frequencies the erior of this ceding scheme behaves much 1ike white noise, we
can appeal to psychcaccustic data cencerning the nasking of white noisc by
varicus signals [Young and Wenner 1687]. Their principal results are the

following:

(1) White noise nmust be of intensity greater than 16 dB8 SPL to be heard at

all, This is called the “urmasked” noise threshoid.

(2) The threshold of percentibility of white noise was not affecied by tne
presence of sinuscids of any frequency when thoir amplitudes were Tess than

80 dB SPL.

{3) Sinusoids between 80 and 120 dB SPL produced a great variation in the
threshold of perceptibility of white noiss as a Tunction of the freguency of
the sinusoid. The threshold was uniformly raised by the presence of the
sinusoid, indicating that the noise had to be at a greater ampiitude to be

heard.

{4) Sinusoids in the range of 700 to 1C00 |z demonstrated the greatest

masking of white noise.
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(5) Increasing the harmonic content of the signal only increased the amount

of masking.

In other words, very low and very high tones do not mask the white ncise
hardly at all, whereas sinusoids in the ceniral freguency range mask the
white noise considerably. Cne can see that this corresponds with what we
might predict from the madels of Zwicker [1958]. Figure 3 shows a schematic
reprosentazion of the masking patterns at three different frenuengies. The
U-shaped curve at the bottom is a stylized representation of the threshoid of
hearing. The dotted line is the excitaticn pattern for pure white noise. The
frequency scale is in Barks which is & transformation based op critical
bandwidths and also on distance aleng the basilar membiranse. Ye tan see that
the masking pattern for the intermediate freguency covers (masks) a largsr
proportion of the white ncise pattern than does either ths very low freguency
or the very high frequency and is thus generaiiy cocnsistant with the results

of Young ard Yenner.

To test the relaticn between these findings and our own case, we perforned
experiments to determine the perceptibility of the guantizetion distortion
with ocur ceding scheme. It guickly became epparent that no other value of the

coefficient, a, was useful except the value 1.0. The reason fer tnis is that

o

the audibility of the quantization noise is much increased at low freguenciss

which implies that much more precision is necessary. Ail other values

0

sacrifice precision in the lows for 1ittle gain in ths hichs. The corplete
range from a=0 to a=1 only changes the distertion for the highs by 6dB,
whereas it reduces the distorticn for the lows by mrore then 25 dB. This line
of reasoning aisc implies that it is never advantageous %o use straight
floating point (a=0). It is virtually always better to use differeniial

floating point (a=1) for coding audio.

By informal listening tests, we narrcwed down the ranges of bits for each
freguency and decided on the following test paradigm: seven frequencies were
chosen. At each freguency, four mantissa lengths were chosen such that the
Towest number of bits clearly demonstrated audible distortion and the highest

number of bits was indistinguishable. We then presented the uncoded and ccded
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signals in groups of three, two uncoded and one coded, and asked the subject
to write down which of the three sounded different from the other tuo. If the
subject is guessing, we would expect a probability of 1/3 fer each categery.
Every trial was presented three times with the coded signal ia positicn 1, Z,
and 3, and the order of presentatien was completely randomized. Since we had
recordad the stimulii on magnetic iape using dBx noise reduction, wa found
that the imperfections on the tape (dronout) causes axperimental bias. Ve
produced three different tapes with thres different orders in hopes that the
bias would average out. The stimulii were presented to the sudjects by
loudspeakers (JBL 4343 studio monitors) in a relatively dry rocm with a
background noise level (including the sound of the tape recorder) of 26 dB
SPL (A-weighted). This experiment can not be considered ahsolutely definitive
because of the fact that the stimuiii were recerded on magnetic tape rather
than presented direcily from the computer, but this gives us scme reascnable

guideTlines toward chosing a mantissa lengtih.

The results of the experimeznt are shcown in table IY and figure 5. 1In Teble
1V, the Tirst column gives the freguency of the sinuscid, and the secend
column gives the ratio of that frequency to the sampiing rate which was 25600
Hz. The third column is the resulting sound intensity at the subject in dB
SPL. There is variation due to the {uncompensated) irreguiarity of the
responses of the loudspeakers. For each frequency, as tha number of bits
increases, v expect the fraction of correctly idantified ceded signals to
drop to the guess level, which is 1/3. Ye fit the subjects' responses with

the Tollewing twe-parameter sigmoid function:

2
(3) f(by= 1 -« —
3 -B(b-a)

The number of bits at the 95% confidence level {when the sigmoid function
dropped below 0.367) is shown in the fourth column in table IV, and the {ifth
column gives the error in dB at that number of bits. The sixth column gives

the predicted threshold from the Young and Wenner [1967] data. In figure 5,
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the subject's responses in terms of the fraction of correct responses is
plotted versus the number of bits in the mantissa of the coded-decode signal.
The vertical extent of the cross represents a deviation of plus and minus one
root-mean-square error from the fitting of these daia by the sigmeid
function. The horizontal extent of the cross represents this same RMS error
divided by the slope of the sigmoid function at that point (iimited to plus
er minus one bit maximum). The 95% confidence level is represented by a small
square along the sigmoid functiion, and the deviation of onc RMS error unit
from the random level of 1/3 is represzsnted by a small triangie. HMost of the

time, these levels coincicde.

These results confirm cur prediction that the noise is more perceptible at
the lower freguencies, and reascnable correspondance is shown between our
results and those of Young and Uenner. At higher frequencies, our resulis
diverge from those of Young and Wenner. Pessibly this is due te the fact that
the form of the distorticn is no lenger Tike white noise at these higher

frequencies. In any case, this should be a subject of further study.

From these results, we can safely say that for sinusoids of ali but the

highest freqasncies, a mantissa length of 9 bits should be sufficient. AL
higher sampling rates, we can expect that even fewer bits weuld be needed
because figure 2 shows that doubling the sampling rate decreases the error

almost universally by 6 dB.
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TABLE TV
FREQUENCY d3 SPL av bits error predicted
60.3 .0023 165 6.15 -8z.2 -89.0
139.6 .0054 128 7.31 ~85.0 -84.0
323 .0126 95 8.91 -82.5 -80.0
747.5 .02¢2 96 8.44 ~72.9 -66.0
1729 .0676 93 8.63 ~67.4 -66.0
4603 .1564 92 7.08 -51.4 -76.0
t0263 .3619 88 9.55 ~60.8 ~72.0

Results of perceptibility experiment for the fleating-peint coding scheme
with a=1. The sampling rate was 25600 Heriz. For each of the seven
freguencics, we 1ist the freguency in Hertz, the ratio of the frecuency to
the sampiing rate, the resulting intensity in d8 SPL (which varied due to
unevenness in the speaker response), the average number of mantissa bits
reguired for 05% certainty of indistinguishability, and the resulting error
at that number of bits. The sixth column shows the audibility of white noise

as derived from the Young and Yenner [1067] data.
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DISCUSSION

These data show that for sinusoidal signals of normal range, nc mecre than 9
bits of mantissa are necessary (if sign compression and rounding are used),
giving a 13-bit sample. This is a net savings of 3 bits per sample, which
while not striking in itself is capable of a dynamic rangs equivalent tc a
24-bhit integer sample. In any case, any savings at all wiil be greatly
appreciated by the digital tape reccrder manufacturers, in that they ars
already up against the problem of the tremendous bit densities required. This
is also for highest guality reproduction. For lesser quality, such as homs
recordings or other secendary channel uses, a smaller 11 or 12 bit sample
could be envisiened which still preserves the dynamic range of a much lerger

sample.

MNotice that this impliies that under certain circumstances, the 12-bit

straight flcating-point schemes of Kriz [1878] and Ble

exhibit perceptible distertion, especially fer very low tenes. Happily,
low-frequency sinusgids virtually never cccur in nature. It is most likely
that one could only show up the problem with computer-generated tones.
Indeed, even the 14-bit straight PCH system used by the BBC nay demonstrate

soems audible distortion on ceriain Tow tenes of high spectral purity.

per sample, unlike the minimum-length scheme Tirst described, but shares with
minimum-length encoding the property of being ason-restartable. That is, the
entire sound file must be decoded frem beginnirg to end: one cannat
conveniently start in the middle. For this reason, we recommend storage by
blocks where the Tirst, say, 24 bits of the block is the exasct integer vaiue
of the previous sample of the last block, and the remainder of tne block is
then the differences as previousiy describad, This allows one to restart on
any block houndary, but still reguires reading through the block to restart

at a given sarmple within a blsck.

As for hardware realizations of this schems, one might be tempted to realize

the decoding algorithm with a Tlow-order {(10-bit, for instance) converter for
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the mantissa followsd by scale change to effect the exponent and an
integrator to realize the summation. It is possible that this could be made
to work, but the fundamental difficulty is that the freguency response of a
digital summation is different frcm that of an analog integrater. Some
compensation filter would have to be included to flatten the overalil

response.

There remain still a few points to discuss. One objection might be phrased as
the Toilowing question: Why should the results for the sinusoids be taken as
the worst-case? Yhy shouldn't there be some other signal that would show up
the error more easily than the sinusoid? This is easily answered in that the
sinusoid shows the minimum masking for the given loudness. A1l other signals
exhibit a greater degree ef masking, and thus will certainly reduce the
perceptibility of any distortion present. The higher the harmoric content of
a sigral, the more complete the masking of the guantizaticn will be. One

might then ask zbout transients. Thz Tact that this system takes several

)

samples to converge to a given value, deesn't that mean that there will be
distortion of the transients? Indeed it deas, but lTikewise, a transient has a

very large bandwidth, and thus relatively high masking capabilities.

Another guestion might be whether the high level of distortion on the high
frequencies is acceptable or not. The fact that the distortion increases to
a maximum at about .23 of the sampling rate and that this maximum is & dB
higher than the comparable straight floating-point system (a=0) has led some
authors to regard this methed as “"totally unacceptable® [Blesser 1978, p
752]. Me cannct entirely understand the harshness of this complaint in that
the only signals that can occur as full-amplitude sinusoids of these
frequencies are machine-generated signals. For digital recording studio
purposes, using live or natural socurces, full-amplitude high-frequency
signals simply do not occur. As soon as the sinusoid is not perfectly pure
{(harmonic distortion down more than 50 dB), the extra masking allows a much
higher ievel of noise to be present. If cone were only %rying to decide
between straight floating point and incremental floating point, there should
be no question, because for the same sample length in bits, the increase in

fidelity for the low tones of any amplitude is much more important than the
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loss of fidelity in high-amplitude highs. If one were trying to decide
between straight PCM and incremental floating point, one would have to
consider carefully the nature of the audio material to be recorded. Althcugh
the computer is perfectly capable of generating such high-amplitude
sinusoids, it is not necessarily what computer music composers wish to do all
the time. In fact, our experience over ten years of computer music work at
Stanford suggests that this occurs in practice very little. For a definitive
system, however, one might reasonably "hedge one's bets" by use of a
dual-mode system, such that a bit is carried alchg at the beginning of each
block giving the coding of that block, be it straight PCM or incremental
flocating point or whatever. It would then be the responsibility of the
operator at the time the recerding is made to chose the ccding technique he

feels will give the best results for the given scund.

The only reascn not to use a ccding scheme such as the one described would be

if one were going to do further preceszsing en the signal. Fer instanc

(el
-

filtering the signal such as to ampiify seme part of the spectrum that is nst
occupied by signal would have the effect of amplifying the nociszs in thet
spectral regicen. If the Tiltering were strong encugh, this could indesd
amplify the noise te the point where it would be erdible. Likewise, if cne
intended to do mathematical analysis on the signal to, for example, exiract
physical parameters of musical instrument tenes, or to compare distorticn
figures of amplifiers or somcthing, cne micht indeed want precisicn bayond

that of the sensitivity of human hearing.
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CONCLUSIONS

Minimum length encoding and incremental fleating-point enceding were
considered as possible schemes fer reducing the amount of data in
high-quality digitized audio. It was found that optimum coding on the second
differences of the sigral produced the greatest reduction of data, but that
certain signals could only be reduced very slightly. Furthermore, if a
coding table is used that does not correspend 3o the optimum for the sound,
an explosion of the amount of data up to a Tactor of two over the originai
rate can cccur. Despite this, our experience suggests that for the most pert,
reductions of 5 to 7 bits per sample can be expected. The inconvenience of
the method is that storage in blecks of fixed numbers of bits resulis in each
bleck possikly containing a different number of samples, a fact which may cr

may not be a problen, depending on the applicatioen.

Fer Tlocating-peint incremental ceding, a psycheaccustic experiment was
performed to determine the perceptibility of the error. It was found that
with pure sinusoids, a mantissa of 9 bits or more assured indiscriminibility
at the 95% confidence Tevel for ail but the highest freguency tones. This
numher assumes Sign compression and rounding has been performed in the
floating-point conversion. This provides a uniform reduction of 3 bits per
sample for highest-guality resulis and even more if vltimate guality is not
necessarily the goal. This methced has the advantage that the number of bits
in each sample is constant, but shares with minimum-length encoding the
disadvantage that a sample in the middie of a data block cannot be referenced
at random but the block must be read from the bogining. Furthormore, appeal
was made to the theory of masking to support the cleaim that testing with pure
computer-generated sinusoids is the worst case and that with any normal

musical sound, the coding error will be even more complietely masked.

In conclusion, there seems to be little reason to use straight PCH coding for
digital storage and transmission of audio except when extremes of precision

and predictable error characteristics are needed.
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FIGURES

1) Block diagram of coding scheme. Q represents floating-point encoding of
the signal and Qt-1 represents decoding of the signal. The coefficient, a,
is set to zero for straight floating-point coding and to 1.0 for differential

coding.

2) Error rates for an 8-bit mantissa with sign compression and rounding for
different values of the coefficient, a. The input in this case vere pure

sinusoids of full amplitude.

3) Masking patterns for three different frequencies. The U~shaped curve on
the bottom is the threshold of hearing. The dotted lire across the hottem is

the power spectrum on a Bark scaie of uniferm white noise.

4) Error spectra for fleating-peiat incrementel coding at 7 different
frequencies. The mantissa length was uniformly 6 bits. The coefficient, a,
was set to 1. The frequencies in terms of fractions of the sampling rate
vwere {a) .0023, (b) .0854, {c)} .0126, (d) .02%2, (e) .C676, {f) .1564, and
{g) .3619. tiote that in most cases, the signal resembles white noise very
clesely. In two cases, {e) and {g), there is a marked nen-white nature, but

the error is broadband.

5) Results of discrimination experiment. The frequencies are the same as
shown in Table IV and in figure 4. The four trosses in each Tigure mark the
fraction correct for discrimination at each of feur mantissa lengths. The
smooth curve is a sigmoid Tunction that was fit to the four points my
minimizing the mean square error. The vertical strokes in each cross indicate
deviation by plus and minus one RilS error. The horizental strokes are the {3
error divided by the slope of the sigmoid curve at that point to give a rovgh
indication of the variability in terms of number of hits. The square marks

the 95% confidence level, the triangle marks one R¥S error from 1/3.
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