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INTRODUCTION

With the ever-decreasing prices of digital hardware and storage, it would

appear that a wave of interest in the use of digital media for storage of

high-quality audio is mounting. The current round of digital tape recorders

is but one example of this interest [tlyersand Feinberg 1972, McCracken

1978]. Synthesis of music via computer is now a well-known practice [Moorer

1977, _athews 1969] which is established largely in universities around the

world. Digital synthesis hardware for musical purposes is now coming to

fruition as we sea several different designs for synthesizers developing

[Alles and diGiugno 1977, Alonso et al 1976]. There is even digital hardware

available for reverberation simulation on the commercial market [Blesser et

al 1975]. It requires at this time only a small leap of faith to envision

digital processing all the way from microphone preamplifier to home

loudspeaker. This being the case, it seems reasonableto ask whether the

currently popular method of storing this data, that is, in PCM, is

necessarily the best. We clearly need good guidelines, based on perceptual

studies, as to what defines quality in digitally coded sound.

Almost all commercial digital audio is stored in terms of PCM. The sampling

rates vary (on the commercial, high-quality units) from a low of about 32 KHz

[Alles and diGiugno 1977, _)arnock 1976, Blesser et al 1975] to a high of 50

KHz [McCracken 1978]. The number of bits in the code word is almost

universally 16, although this is sometimes realized by converting less than

that, such as 12 bits, and using scale switching to achieve the dynamic range

[Blesser et at 1975, Kriz 1975]. There is some evidence that a higher dynamic

range than the potential g6dB range of the 15-bit word might be nice, but

certainly not economical at this time.

We can debate endlessly about the choice of different numbers of sampling

rates and differentnumbers of bits. Users of the lower sampling rates offer

that most people cannot hear above a certain frequency, and that the phase

linearity of digital audio makes the lack of high frequencies much less

audible. Another argument for lower overall quality is the one often given

that most music is presented finally in home stereo systems which have

somewhat limited fidelity in themselves, or that the public at large does net
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even appreciate higher fidelity. There is always the example of automobile

music systems and portable cassette players to fi× the minimum quality

currently in use today. Other arguments by users of lo,er sampling rates are

that the hardware to process the higher sampling rates is prohibitively

expensive_ or in the case of digital audio tape, the data density on the tape

(typically 28,000 bits per inch) even at lower sampling rates is already at

the limits of the technology. Any argument based on hardware costs or

limitations will evaporate with time since the prices of digital hardware

show no signs of ceasing their exponential downward trend in the years to

come. The problem of high data densities is more fundamental, in that higher

densities mean greater error rates.

In our own discussions with the people who record, make, and produce music

today, it is clear that they will not abandon the current technology for the

newer digital hardware until they can achieve with the same ease all the

things they can do with contemporary professional audio equipment. This is

quite a tall order for digital competitiQn. For example, if we do not count

the microphone preamplifiers, the specifications for modern mixing consoles

exceeds a 110 dB total dynamic range. This would imply an 18 to lg bit system

which is clearly beyond the bounds of modern conversion systems today. If we

just consider the tape equipment, with noise reduction devices a go dB signal

to noise ratio can often be achieved, although it is impossible to get rid of

the few tenths of a percent of 3rd harmonic distortioq that is inherent in

magnetic analog recording. As surprising as it may seem to people thinking

about making digital audio equipment, there are recording engineers, in the

popular music field, who are capable of distinguishing a recording from an

identical recording with all the high frequencies above 15 KHz removed. Thus

there is reason to believe that whatever we may think about its advantages,

digital audio will not find a large place in the professional _edio market

until it can compete in quality end convenience, although not necessarily ia

price, with current professional audio systems.

Despite the raging interest in digital audio, there seems to be very little

published material on the perceptual bases for coding schemes for

high-quality audio [Lee and Lipschutz lg76]. It is not really well known how
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much distortion the ear can tolerate or what kind of audio material should be

used to test digital audio systems. It is the purpose of this article to make

a micro-step toward not necessarily the answers to these questions, but

toward an understanding of what are the issues are and what are the right

questions to ask.

Since our own investigation of this question stems from the investigation of

specific coding schemes for high-quality audio, we shall begin our discussion

with these coding schemes.
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MINIMUM-LENGTH CODING

The fundamental idea of Huff.man coding is that the numbers which represent

(in our case) the sound samples are not evenly distributed: curtain numbers

occur more frequently than others. This being the case, we can assign very

short codes to the numbers that occur nest often, and longer cedes to the

numbers that occur less often. This is usually accomplished in tt_o passes

over the sound: on the first pass, a histogram is computed giving the

frequency of occuranee of each number. From this histogram, we can compute

the coda using the method described in Huffman [lg52]. On the second pass, we

substitute the minimum-length code for each sample. This has the feature

that the samples no longer take the same amount of storage. The first sample

might be 2 bits long, the next sample 6 bits, and so on. The advantage of

this system is that there is no loss of information, The coding scheme can

encode any string of numbers without error, thus no questions of

perceptibility of ceding distortion ca_ arise.

There are several disadvantages, however, to this coding scheme. One of the

most fundamental is that the optimum coding can not be determined until one

has the entire signal available to eo_pute the histogram. The severity of

this limitation, though, depends on the application. For recordings which

have been made in the conventional way but are no_? to be distributed in

digital form, this presents no problem in that the code cum be computed

before the distribution is done, after the recordino is completed. This does

mean that the code table must be transmitted as a preamble to the sound

samples themselves. For doing direct digital recording, th_ statist;cs of the

signals are not available beforehand, and some pre-computed table must be

used. This guarantees a sub-optimal coding, and in some cases can actually

explode the data rate above that required for straight PC_I codino.

To further explore the utility uf sub-optimal codino, we e_barked an an

empirical study. We coded several different dioitized samples of speech,

computer-generated music, and live music in various different ways to try to

compare the results. Furthermore, there was some suspicion that cedin_ first

or second differences might increase the redundancy in the samples because of
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the fact that ordinary music tends to have most of its energy in the lower

frequencies, thus implying smaller differences. This is not necessarily

true, however, of computer-generated sound. The composer of computer music

can use full-amplitude signals of any frequency.

The coding scheme we chose is, in fact, a modification of the Huffman schemE,

in that for every code that takes more than the original number of bit_, we

substitute a special code followed by the original sample. In the worst cast,

by complete mismatch of c_de and sound, the data would be increased by a

factor of two, but no more. In Table I_ we show the results for three

different sound files with varying number of high-order bits. Our first

observations were that the histograms for positive numbers were virtually

identical to tho_e for negative numbers, so that no additional reduction was

obtained by treating them differently. ?bus to code the sample, we first

stere the sign bit then take the absolute value. Our next observation was

that the entropy of the low-order bits _as so high that it only made sense te

code the high-order bits.

In table i, the sounds used were LS, an utterance by a male speaker in a dry

environment, PD, a piece of computer-processed music with live flute,

synthetic end natural voice, other computer effects, and simulated

reverberation, and TR, a piece o_ computer-synthesized speech music with

reverb. The rows marked 0, 1, and 2 refer to 0th difference (no change), 1st

differences, and 2nd difference, which is expressed mathematically as

follows:

X(n) 0thdifference

X(n)-X(o-1) 1st difference

X(n)-2X(n-1)+X(n-2) 2nd difference

These ere equivalent to pre-e,mphasis filters and require the appropriate

de-emphasis filter for decoding. The exact inverse filters for these are

quite simple to construct, requiring only memory, additions, and shift

operations with no multiplications.
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The first question we ask is how many high-order bits does it make sense to

code? If we think in terms of a 16-bit 2's complement input sample, we can

see that in most cases, the mean sample length increses exactly in

correspondence with the number of high-order bits used. A slight economy is

realized in going from 10 bits in sound file TR to 12 bits, but virtually no

economy is realized in going from 12 to 13 or to 14. This implies that 12

bits is a reasonable number of high-order bits to use in the coding. The sicn

and the low-order 3 bits should be transmitted separately in an uncoded

format.

The next question is what order difference should be used? This seems to

depend strongly on the sound. PD, which is rich in high-frequencies, shows

the least improvement in going from 1st to 2nd differences, but reports

nonetheless substantial improvement in going from Oth to 1st differences.

Since the other files show improvement in going to 2od differences, it seems

worthwhile to use 2nd differences universally.

The final question we will address here is that oF the loss in using

sub-optimal codes. To test this, we used four more sound files and co_p_lted

all combinations of codings and histograms. Sound file DU was computer

synthesized bell-like tones with no reverberation. SC was music instrument

tones that had been analysed and synthesized using additive synthesis, then

reverberated by the computer. F× is a digital recording of a live flute in a

very dry environment. Ft! is this same flute reverberated by direct

convolution with a synthetic concert-hall impulse response of quite long

duration. FW is, in fact, very typical of popular classical recordings.

There is often a great deal of reverberation present in later classical

works.

The rows of table II are endings of different sound files with a table that

has been computed as optimal for the sound file whose nome is at the le_t.

The columns are the different endings of a given sound file. The dia_onal

represents the optimal coding of a sound file, that is, by its own code. We

can see clearly that the mismatch of code to sound file is, in some cases,

disasterous. Coding of F_ by any but its own code produces an explosion of
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the amount of data involved. The reduction by use of its o_n code is, in
..

f_ct, minimal and hardly worth the effort. The other sound files seem to

reduce satisfactorily, however_ and if one can tolerate the occaisional data

expansion, then this may be indeed a useful coding technique. If e fixed

table must be used, we recommend using the table calculated for the sound

file Pg. That seems to have the least problem with other sound files,

although the net reduction is only between 5 and 7 bits per sample. For

16-bit samples, this gives between 9 and 11 bits for each sample for most

sounds.

T_ble !II gives the resulting codelengths for the optimal code for _ound file

Pg. The 12-bit number to be coded will be from 0 to 4095. The numbers from O

to 454 _vill all have unique codes of 12 bits or less. Above this value, the

sample is coded as a unique 12-bit code (there will be one left) followed by

the original 12-bit value. Dotice that the progression is almost exponential.

Each range almost doubles the number cf m_bers ap to a point. Thi_ suggests

that some form of floating-point encoding might be useful. _e will discuss

this further in the next part.

There is a further inconvenience with the use of minimum-length encodim_, and

that is the problem of error recovery and random access. The problem is that

the cede is designed to be decoded by e×emining the stream bit by bit and

greupin_ the variable numbers of bits into samp!os. If you lose your place in

the bit stream, there is no way of identifying the beginning of a new sample.

This can be easily corrected by breaking the data into blocks and restarting

the code at the beginning _f each block. In this case, you must put up t_ith

the fact that either each block will be a different length with a constant

n_mber of samples per block, er each block will contain a fixed number of

bits with a variable number o_ samples. Moreover, if you wish to reference a

particular sample in Lhe middle of a bloe_% you must begin decoding a_ the

beginning of the block.
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TABLE I

LS PD TR

) 9.079/12 10.092/13 9.547/12 11.631/14 11.303/12 9.026/!0

[ 5,796/12 6.597/13 7.836/12 9.860/14 5.596/12 3.507/10

2 4.966/12 5.89g/13 7.767/12 9.795/14 4.836/12 2.973/10

LS: Spoken utterance from male speaker

PD: Computer-generated music with flute, voice, computer sounds,

and reverberation

TR: Computer-generated synthetic voice with reverberation

Average code lengths for ceding the high-order 10 through 14 bits of the

rectified samples for diferent sound files. The number before the slash in

each case gives the mean sample length after coding. The number after the

slash is the number of high-order bits that were used. The rows marked 0, 1,

and 2 denote 0th differences (coding the sample itself), 1st differences, and

2nd differences.
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TABLE II

Sounds to be coded:

DU SC FX FW TR PD LS

DU 6.069 5.959 5.992 17.320 4.948 8.526 5.044 Table used:

SC 6.697 6.107 6.996 18.158 5.605 9.590 5.790

FX 6.581 6.536 5.833 19.546 4.974 9.798 5.305

FW 8.419 8.342 8.593 11.286 8.207 8.952 8.364

TR 7.037 7.155 6.175 20.605 4.836 10.853 5.397

PD 6.383 6.201 6.196 14.727 5.552 7.767 8.649

LS 6.272 6.10B 5.969 18.913 4.779 9.375 4.966

DU: Computer synthesized bell-like tones, no reverberation

SC: Synthetic music instrument tones with reverberation

FX: Liv_ flute in very dry studio

FW: Same flute with concert-hall reverberation

TR, Pg, and LS as in table I.

Comparison of mean sample lengths when the code used is computed from the

histogram for a different sound file. Each row is a code from the sound file

indicated at the left. The columns are the coding of a given sound file by

different codes. The diagonal represents the optimal coding. We see that in

Some cases the sub-optimal coding causes an explosion of the mean sample

length.
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TABLE III

CODE LENGTH RANGE

4 0:1

5 2:5

6 6:15

7 16:33

8 34:66

9 67:126

10 127:211

11 212:329

12 330:454

24 All others

Optimum code for sound PD. All numbers bet_esa 455 and 4095 are ceded _s a

special 12-bit code (there will be one le_t) followed by the original 12 bit

sample. This keeps a bound on the maximum code length but causes a slight

increase in mean sample length.
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FLOATING-POINT CODING.

Figure 1 shows the block diagram of the floating-point coder we have been

working with recently. Q represents the floating point quantization end

ceding itself. The inverse of O represents decoding into integer. In the

figure, X is the input signal, Y is the coded output signal, and R is the

reconstructed signal at the transmitting end. The receiver need only

duplicate the circuitry required to generate R from Y. The coefficient, a,

can be thought of as a pre-emphasis quantity. At zero, we have direct

floating-point coding, such as is used internally in the converters of Kriz

[1975]. At one, we have something resembling ADPCM coding [Jayant 1974,

Cummiskey et al 1973] but with the scale factor explicitly transmitted,

rather than inferred. This system is a special case of the predictive coding

scheme for voice [Atal and Schroeder 1970, 1978, Nakhoul and Berouti !978].

The point of putting the quantizatien in the loop is so that long-term error

does not accumulate. The reconstructed signal will always converge to the

desired value in a finite number of samples. This system at a=l is

functionally identical to that described by Samson [1978].

The fleeting-point coding scheme we are considering represents the integer

input sample as a mantissa of b binary bits and an exponent which is almost

always 4 bits long. If we force the mantissa %o always be normalized, we can

save one more bit by throwing out the sign bit, which will always be the

complement of the high-order mantissa bit. We will call this process "sign

compression." Performing sign compression causes us a problem in

representing very small numbers, so we have been using as the exceptional

case an expone:t of zero to indicate that the mantissa is not sign

compressed, but is a two's complement, right-adjusted number. In this case_

the sign must be extended to the high order bits. In sign compressed codes

(exponent unequal to zero) the complement of the high-order mantissa bit is

extended to the high-order bits and the resulting two'scomplement word is

shifted left the number of places indicated by the exponent. The vacated

positions are to be filled with zeros. By way of terminology, when we say

that a mantissa has b bits, v_e will mean b bits after sign compression. It

would be (b+l) bits if the sign were included explicitly.
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The question is now what values of the numbers b and a provide the greatest

compression with the least amount of perceptable noise? For a given setting

of b and a, the total dynamic range representable is determined by the number

of choices of shift. For this study_ we shall insist on at least a ]6-bit

dynamic range, with further dynamic range considered to be icing on the cake,

i.e., desirable but not absoi[_tely essential at this tim_.

As a step toward understanding the behavior of the coding algorithm, we

performed a series of simulations of the system on a general-purpose computer

with varying values of the parameters. The error was computed as follows:

2 2

(1) E = 10 log
10 2 2

N _X(n) - (_×(n))

where ×(n) is the input signal at time eT, T bein_ the sampling period. _(n)

is the error signal, which is just (R(n)-×(n)), where R(n) is the

reconstructed signal.

This error measure gives us the expected results when the coefficient a is

set to zero. For pure floating point, the error is appro×imated by the

fol!_._ing:

(2) E = 6(b+1.5)
a:O

We have added 1.5 to the number of bits in the mantissa for two reasons. The

first is that sign compression was used universally in this stL_dy which adde

one bit to the effective mantissa length. The second is that rounding the

signal before coding always reduced the noise level by 3dB, so that rounding

before quantizing is also used universally in this study. For b=8, the error

using different values of the coefficient a is shown in figure 2. The inputs

were pure sinusoids of full amplitude. We can thus expect that b=8 gives

about 57 dB of signal-to-noise ratio (for a=O), 10 bits gives abol_t 6g dS,
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and so on. The curves in figure 2 are only given for b=8 because uther values

of b only shifted the curves up er down by 6 dS per bit. The shapes were

identical. The "bumpy" character of the a=l curve shows in a very evident way

the changing of scale as the slopes of the sinusoids grow with increasing

frequency. One important thing to notice is that in no case does the maximum

error exceed the error for the pure floating point case (a:O) by more than 6

dB, and for frequencies less than .16 of the sampling rate, every increase of

the coefficient reduced %he error. Any value of a above 1.0 drives the

reconstruction filter unstable and is thus considered Undesirable.

All this discussion of the coding scheme and its error may he interesting but

not terribly useful until we determine its relation to perception. At first

glance, the increasing error with increasing frequency may seem detrimental,

It is not clear either that sinusoids form a representative test set, that

one can generalize from pure sinusoids to musical sound. As an illustration,

one can site the cese of transient intermedulatien distortion in amplifiers,

where an amplifier can function perfectly with sinusoids but distort greatly

for high slew-rate transient signals. Likewise, since the coding/decoding

process is highly nonlinear, we might expect that the error could increase

when transmitting more complex spectra than simple sums of sinusoids.

We tried several different kinds of filters for coding end reconstruction

besides the simple ]st order system shown here, but every attempt gave no

appreciable gain in overall precision. We could trade distortion in one

frequency region for distortion in another frequency region, but were enable

to find aeetiler kind of filter that uniformly reduced the distortion es did

the simple 1st order filter shown. This filter has the further advantage that

it can be realized entirely without multiplications. Realization of the

floating-point coder and decoder requires nothing more than binary _hift.
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RELATION TO PERCEPTION

To begin the study of the relation of figure 2 to perception, we did informal

tests, both physical, gedanken, and simulated, on the effects of this kind cf

coding. _!hat we seemed to be perceiving was that the extremes of frequency

were much more sensitive to distortion thee the mid frequencies. The le_s

expecially were extremely sensitive. _e looked at the error spectra to try

to find some clue as to why this might be the case, but the error spectra

were uniformly flat [Bonnet 1948]. They looked much like white noise

spectra. Figure 4 shows error spectra for seven different frequencies of

sinusoids coded and decoded via this method. For the highest frequencies, or

for frequencies very close to some integral divisor of the sampling rate,

there were sinusoidal distortion produnts, but they were again distributed

uniformly tbrouDhout the spec%rum. They did net bunch or cluster in

particular spectral regions. This led us to believe that this difference in

sensitivity could only be the result of a perceptual phenomenon.

To determine, at least in the steady state, whether a given sound will be

perceptable in the presence of another sound, we can use the results on

loudness summation in the presence of masking. This exposition will follow

the theories of Zwicker and Scharf [Zwicker 1958, Zwicker and Scharf 1965].

Since their theory is much toe complex to give in full detail here, we will

only attempt to highlight certain of the features that ere most relevant to

our discussion of perceptability of quantizing noise.

To form the loudness estimate efe sound, we start _tith the energy in each

critical band. For each critical hand, the appropriate masking pattern is

selected according to the frequency and tetel energy in the band [Zwicker

19S8]. The masking pattern itself is taken to be representative o? the

excitation pattern on the basilar me_brane. The specific loudness is then

calculated from the masking patterns for each band by a modified power la_.

We then superimpose all the patterns for al! the critical bands. These

patterns define an upper envelope. The integral of the specific loudness

between the threshold curve and this envelope is then the loudness.
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What this implies is that if we then add any other sound, if it does not rise

above this upper envelope, it will not be heard. We then should be able to

predict from the published masking patterns the perceptibility of the

quantizatien error. We implemented this model in software to attempt to

predict loudness and audibility [Hooter 1975_ Grey and Gordon 1978]. The

results were that the model could indeed be adjusted to give measures of

loudness that were consistent with experimental 6vidence, but the prediction

of audibility or non-audibility was far too sensitive to the exact shapes of

the masking patterns and the threshold curve to be reliable.

Happily, even in the absence of a rigorous and precise theory for this

question, we do have two experimental works along this line. We will take the

approach of Lee and Lipschutz [1972] in that we would like that the signal

Mask the quantization error under all circumstances. Since at lower

frequencies the error of this cedinu sche_;e behaves much like white noise, we

can appeal to psychoacocetic data concerning the masking of white noia_ by

various signals [Young and Wenner lg67]. Their principal results are the

following:

(1) White noise must be of intensity greater than !6 dB SPL to be heard at

all, This is called the "unmasked" noise threshold.

(2) The threshold of perceptibility of white noise was not affected by the

presence of sinusoids of any frequency when their amplitudes were less than

80 dB $PL.

(3) Sinusoids between go and 120 dB SPL produced a great variation in the

threshold of perceptibility of white noise es a function of the frequency of

the sinusoid. The threshold was uniformly raised by the pFesence of the

sinusoid, indicating that the noise had to be et a greeter amplitude to be

heard.

(4) Sinueoids in the range of 700 to 1COO I)z dcmonstrated the greatest

masking of white noise.
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(5) Increasing the harmonic content of the signal only increased the amount

of masking.

In other words, very low and very high tones do not mask the white noise

hardly at all, whereas sinusoids in tI_e central frequency range mask the

white noise considerably. One can see that this corresponds with what we

might predict from the models of Zwicker [1958]. Figure 3 shows e schematic

representation of the masking patterns at three different frequencies. The

U-shaped curve at the bottom is a stylized representation of the threshold of

hearing. The dotted line is the excitation pattern for pure white noise. The

frequency scale is in Barks which is a transformation based o_ critical

bandwidths and also on distance along the basilar membl'ane. Ue can see that

the masking pattern for the intermediate frequency covers (masks) a larger

proportion of the white noise pattern than does either the very low frequency

or the very high frequency and is thus generally cansistant with the results

of Young and !fenner.

To test the relation between these findings _nd our own case, we performed

e×periments to determine the perceptibility of the quantization distortion

with our ccdin§ scheme. It quickly became apparen_ that no otl_er value of the

coefficient, a, was useful except the value 1.0. The reason for this is that

the audibility Of the qnantizatien noise is much increased et lcw frequencies

which implies that much more precision is necessary. Ail other values

sacrifice precision in the lows for little gain in the hichs. The complete

range from a:O to a:l only changes the distortion for the highs by 6dB,

whereas it reduces the distortion for the lows by more than 25 dB. This line

of reasoning also implies that it is never advantageous to use straight

floating point (a=O). It is virtually always better to use differential

floating point (a=l) for coding audio.

By informal listening tests, we narrowed do_n the ranges of bits for each

frequency and decided on the following test paradigm: seven frequencies were

chosen. At each frequency, four mantissa lengths were chosen such that the

lowest number of bits clearly demonstrated audible distortion and the highest

number of bits was indistinguishable. We then presented the uncoded and ceded
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signals in groups of three, two uncoded and one ceded, and asked the subject

to write down which of the three sounded different from the other two. If the

subject is guessing, we would expect a probability of 1/3 for each category.

Every trial was presented three times with the ceded signal in position 1, 2,

and 3, and the order of presentation was completely randomized. Since we had

recorded the stimulii on magnetic tape using d_x noise reduction, we found

that the imperfections on the tape (dropout) causes e×perimental bias. We

produced three different tapes with three different orders in hopes that the

bias would average out. The stimulii were presented to the subjects by

loudspeakers (JBL 4343 studio monitors) in a relatively dry room with a

background noise level (including the sound of the tape recorder) of 26 dB

SPL (A-weighted). This experiment can not be considered absolutely definitive

because of the fact that the stimulii were recorded on magnetic tape rather

than presented directly from the computer, but this gives us some reasonable

guidelines toward chosing a mantissa length.

The results of the experiment are shcwn in table IV and figure 5. In Table

IV, the first column gives the frequency of the sinusold, and the second

column gives the ratio of that frequency to the sampling rate which was 25600

Hz. The third column is the resulting sound intensity at the s_lbject in dB

SPL. There is variation due to the (uncompensated) irregularity of the

responses of the loudspeakers. For each frequency, as the number of bits

increases, we expect the fraction of correctly identified coded signals to

drop to the guess level, which is 1/3, We fit the subjects' responses with

the Following two-parameter sigmoid function:

2 1
(3) f(b) : 1

3 -_(b-:)
] +e

The number of bits at the 95% confidence level (when the sigmoid function

dropped below 0.367) is shown in the fourth column in table IV, and the fifth

column gives the error in dB at that number of bits. The sixth column gives

the predicted threshold from the Young and Wanner [1967] data. In figure 5,
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the subject's responses in terms of the fraction of correct responses is

plotted versus the number of bits ia the mantissa of the coded-decode signal.

The vortical extent of tho cross represents a deviation of plus and minus one

root-mean-square error from the fitting of these data by the sigmoid

function. The horizontal extent of the cross represents this same RttSerror

divided by the slope of the sigmaid function at that point (limited to plus

or minus one bit maximum). The g5% confidence level is represented by a small

square along the si_moid function, and the deviation of one P_S error unit

from the random level of 1/3 is represented by a small triangle. Host of the

time, these levels coincide.

These results confirm our prediction that the noise is more perceptible at

the lower frequencies, and reasonable correspendance is shown between our

results end those of Young and %lenner.At higher frequencies, our results

diverge from these of Young and Uenner. Possibly this is due to the fact that

the form of the distortion is no longer like white noise at these higher

frequencies. In any case, this should be a subject of further study.

From these results, we can safely say that for sinusoids oF all but the

highest frequencies, a mantissa length of g bits should be sufficient. At

higher sampling rates, we can expect that even fewer bits would be needed

because figure 2 shows that doubling the sampling rate decreases the error

almost universally by 6 dB.
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TABLE IV

FREQUENCY dB S_L ay bits error predicted

60.3 .0023 105 6.15 -82.2 -89.0

139.6 .0054 100 7.31 -80.0 -84.0

323 .0126 96 8.91 -82.5 -80.0

747.5 .0292 96 8.44 -72.9 -66.0

1729 .0676 93 8.63 -67.4 -66.0

4003 .1564 92 7.00 -51.4 -76.0

'9263 .3619 88 9.55 -60.8 -72.0

Results of perceptibility experiment for the floating-point coding scheme

with a:l. The sampling rate was 25600 Hertz. For each of the seven

frequencies, we list the frequency in Hertz, the ratio of the frequency to

the sampling rate, the resulting i_tcnsity in dB SPL (which varied due to

unevenness in the speaker response), the average number of mantissa blts

required for 95% certainty of indistinguishability, and the resulting error

at that number of bits. The sixth column shows the audibility of white noise

as derived from the Young and Uenner [!967] data.
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DISCUSSION

These data show that for sinusoidal signals of normal range, no mere than g

bits of mantissa are necessary (if sign compression and rounding are used),

giving a I3-bit sample. This is a net savings of 3 bits per sample, which

while not striking in itself is capable of a dynamic range equivalent to a

24-bit integer sample. In any cass, any savings at all will be greatly

appreciated by the digital tape recorder manufacturers, in that they are

already up against the problem of the tremendous bit densities required. This

is also for highest quality reproduction. For lesser quality, such as home

recordings or other secondary channel uses_ a smaller 11 or 12 bit sample

could be envisioned which still preserves the dynamic range of a much larger

sample.

Notice that this implies that under certain circumstances, the 12-bit

straight floating-point schemes of Kriz [Ig75] and Blesser [lg75] will

exhibit perceptible distortion, especially for very low tones. Happily,

low-frequency sinusoids virtually never occur in nature. It i5 most likely

that one could only show up the problem with computer-generated %ones.

Indeed, even the 14-bit straight PCM system nsed by the BBC may demonstrate

some audible distortion on certain low tones of high spectral purity.

The floating-point incremental scheme described has a constan_ number of bits

per sample, unlike the minimum-length scheme first described, but shares with

minimum-length encoding the property of being non-restartable. That is, the

entire so_nd file mast be decoded from beginning to end: one cannot

conveniently start in the middle. For this reason, we recommend storage by

blocks where the first, say, 24 bits of the block is the exact integer value

of the previous sample of the last block, and the remainder of the bloc!( is

then the differences as previously described. This allows one to restart on

any block boundary, but still requires reading through ti_e block to restart

at a given sample within a block.

As for hardware realizations of this scheme, one might be tempted to realize

the decoding algorithm with a low-order (lO-bit, for instance) converter for
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the mantissa followgd by scale change to effect the exponent and an

integrator to realize the summation. It is possible that this could be made

to work, but the fundamental difficulty is that the frequency response of a

digital summation is different frcm that of an analog integrator. Some

compensation filter would have to be included to flatten the overall

response.

There remain still a few points to discuss. One objection might be phrased as

the following question: Why should tb_ results for the sinusoids be taken as

the worst-case? Why shouldn't there be some other signal that would show up

the error more easily than the sinusold? This is easily answered in that the

sinusoid shows the minimum masking for the given loudness. All other signals

exhibit a greater degree of masking, and thus will certainly reduce the

perceptibility of any distortion present. The higher the harmonic content of

a signal, the more complete the masking of the quantization will be. One

might then eek about transients. The fact that this system takes several

samples to conver_e to a give:; value, doesn't that _ean that there will be

distortion of the transients? Indeed it does, but likewise, a transient has a

very large bandwidth, and thus relatively high masking capabilities.

Another question might be whether the high level of distortion on the high

frequencies is acceptable or not. The fact that the distortion increases to

a maximum at about .23 of the sampling rnte and that this maximum is 6 dB

higher than the comparable straight floating-point system (a=O) has led some

authors to regard this method as "totally unacceptable" [Blesser 1978, p

752]. We cannot entirely understand the harshness of this complaint in that

the only signals that can occur as full-amplitude sinusoids of these

frequencies are machine-generated signals. For digital recording studio

purposes, using live or na2ural sources, full-amplitude high-frequency

signals simply do net occur. As soon as the sinusoid is not perfectly pure

(harmonic distortion down more than 50 dB), the extra masking allows a much

higher level of noise to be present. If one were only trying to decide

between straight floating point and incremental floating point, there should

be no question, because for the same sample length in bits, the increase in

fidelity for the low tones of any amplitude is much more important than the
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loss of fidelity in high-amplitude highs. If one were trying to decide

between straight PCb and incremental floating point, one would have to

consider carefully the nature of the audio material to be recorded. Although

the computer is perfectly capable of generating such high-amplitude

sinuseids, it is not necessarily what computer music composers wish to do all

the time. In fact, our experience over ten years of computer music work at

Stanford suggests that this occurs ia practice very little. For a definitive

system, however, one might reasonebly "hedge one's bets" by use of a

dual-mode system, such that a bit is carried along at the beginning of each

block giving the coding of that block, be it straight rCM or incremental

floating point or whatever. It would then be the responsibility of the

operator at the time the recording is made to chose the coding technique he

feels will give the best results for the given seund.

The only reason not to use a coding scheme such as the one described would be

if one wer_ going to do further prec_esin3 on the signal. For insta_ee,

filtering the signal such as to amplify some part of the spectrum that is net

occupied by signal would have the effect of amplifyiog the noise in that

spectral region. _f the filtering were strong enough, this could indeed

amplify the noise to the point where it would be audible. Likewise, if one

intended to do mathematical analysis on the si_al to, for example_ extract

physical parameters of _usical instrument tones, or to compare distortion

figures of amplifiers or something, one might indeed want pr6cision beyond

that of the sensitivity of human hearing.
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CONCLUSIONS

Minimum length encoding and incremental floating-point encoding were

considered as possible schemes for reducing the amount of data in

high-quality digitized audio. It was found that optimum coding on the second

differences of the signal produced the greatest reduction of data, but that

certain signals could only be reduced very slightly. Furthermore, if a

coding table is used that does not correspond to the optimum for the sound,

an explosion of the amount of data up to a factor of two over the original

rate can occur. Despite this, our experience suggests that for the most part,

reductions of 5 to 7 bits per sample can be expected. The inconvenience of

the method is that storage in blocks of fixed numbers of bits results in each

block possibly containing a different number of samples, a fact which may or

may not be a problem, depending on the application.

For floating-point incremental coding, a psyc_;oaccustic :xporiment was

performed to determine the perceptibility of the error. It was found that

with pure sinusoids, a mantissa of g bits or more assured indiscriminibility

at the 95% confidence level for all but the highest frequency tones. This

number assumes sign compression and rounding has been performed in the

floating-point conversion. This provides a uniform reduction of 3 bits per

sample for highes:-quality results and even more if ultimate quality is not

necessarily the goal. This method has the advantage that the number of bits

in each sample is constant, but shares with minimum-length encoding the

disadvantage that a sample in the middle of a data block cannot be referenced

at random but the block must be read from the bogining. Furthermore, appeal

was made to the theory of masking to support the claim that testi_]g with pure

computer-generated sinusoids is the worst case and that with any normal

musical sound, the coding error will be even more completely masked.

In conclusion, there seems to be little reason to uae straight PC;1 coding for

digital storage and transmission of audio except when extremes of precision

and predictable error' characteristics are needed.
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FIGURES

1) Block diagram of coding scheme. Q represents floating-point encoding o¢

the signal and qt-1 represents decoding of the signal. The coefficient, a,

is set to zero for straight floating-point coding and to 1.0 for differential

coding.

2) Error rates for an 8-bit mantissa with sign compression and rounding for

different values of the coefficient, a. The input in this case were pure

sinusoids of full amplitude.

3) Masking patterns for three different frequencies. The U-shaped curve on

the bottom is the threshold of hearing. The dotted line across the bottom is

the power spectrum on a Bark scale of uniform white noise.

4) Error spectra for floating-point _ncrement&l coding at 7 different

frequencies. The mantissa length was uniformly 6 bits. The coefficient, a,

was set to 1. The frequencies in terms of fractions of the sampling rate

were (a) .0023, (b) .0054, (c) .0126, (d) .0292, (e) .0676, (f) .1564, end

(g) .361g. Note that in most cases, the signal resembles _hite noise very

closely. In two cases, (e) end (g), there is a marked non-white nature, but

the error is broadband.

5) Results of discrimination experiment. The frequencies are the same as

shown in Table IV and in figure 4. The four Crosses in each figure mark the

fraction correct for discrimination at each of four mantissa lengths. The

smooth curve is a sigmoid function that was fit to the four points my

minimizing the mean square error. The vertical strokes tn each cross indicate

deviation by plus end minus one RHS error. The horizontal strokes are the _S

error divided by the slope of the sigmoid curve at that point to give a ro_g:l

indication of the variability ia terms of number of bits. Tire square marks

the 95% confidence level, the triangle marks one RMS error from 1/3.
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