

СУБМИКРОННЫЕ СТРУКТУРЫ СЛОЖНОГО ПРОФИЛЯ, ПОЛУЧЕННЫЕ МЕТОДОМ РЕНТГЕНОВСКОЙ ЛИТОГРАФИИ НА МНОГОСЛОЙНОЙ ПЛЕНКЕ РЕЗИСТА УЛЬТР АФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ важнейший фактор внешней среды, необходимый для нормальной жизнедеятельности организма и его физического и психологического развития, сохранения здоровья и работоспособности.

УФ-ИЗЛУЧЕНИЕ

стимулирует процессы обмена веществ в организме, способствует его естественному обеспечению витамином Д, повышает закаленность и работоспособность человека, подавляет деятельность бактерий. УФ-ИЗЛУЧЕНИЕ оказывает косметическое воздействие на кожу это проявляется в красивом загаре.

и группового облучения людей УФ-излучением в условиях клиник, санаториев, профилакториев и детских учреждений предназначены установки

Для индивидуального

УФО-1500 И УФО-2500

РЕКОМЕНДАЦИИ К ИХ ПРИМЕНЕНИЮ:

компенсация УФ-недостаточности у детей, жителей Крайнего Севера, работников подземных сооружений.

профилактика простудных, инфекционных и других заболеваний, закаливание организма:

лечение кожных болезней.

УФО-1500 предназначена для группового и индивидуального облучения, УФО-2500 — для индивидуального.

СОСТАВ УСТАНОВКИ:

три одинаковых облучателя, размещенные вместе с блоком питания в подвижной стойке; пульт управления.

Оптическая система каждого облучателя включает в себя алюминиевый диффузный отражатель и дуговую ртутную кварцевую лампу ДРП400 для УФО-1500 или ДРП700 — для УФО-2500. Специальное покрытие ламп поглощает коротковолновое ультрафиолетовое излучение — области УФ-С.

ФУНКЦИИ ПУЛЬТА УПРАВЛЕНИЯ:

установка режима работы;

 звуковая сигнализация о выходе ламп на рабочий режим;

 включение и отключение в любой последовательности облучателей, расположенных на разной высоте;

— установка времени облучения в секундах по счетчику реле времени и его контроль по табло со световой цифровой сигнализацией.

Размеры облучаемой поверхности на
расстоянии 2,5 м от установки, мм 2000×1800
Время получения одной биодозы
с расстояния 2,5 м, мин
для УФО-1500 1,5-2
для УФО-2500 1
Время облучения, регулируемое с помощью
электронного реле, с 1-999
Потребляемая мощность, Вт
· YOO-1500
УФО-2500 2500
Питание четырехпроводная сеть с
нулевым проводом 380/220 В, 50 Гц
Габаритные размеры, мм
стойки
пульта управления 150×225×47
Масса, кг
стойки
пульта управления 2
Установки комплектуются защитными очками.
Стоимость 2000 руб.

МИНИСТЕРСТВО ЭЛЕКТРОННОЙ ПРОМЫШЛЕННОСТИ СССР

Ежемесячный научно-технический сборник

Издается с 1970 г.

ГЛАВНЫЙ РЕДАКТОР Ю.А.Козлов

Редакционная коллегия:

В.А.Афанасьев, А.И.Боровской, С.С.Булгаков, В.Д.Вернер, Г.Г.Горбунова (ответственный секретарь), А.П.Грибачев, Б.Г.Грибов, Ю.Х.Гукетлев, Г.Я.Гуськов, Н.Д.Девятков, Ю.Н.Дьяков, Н.Н.Евтихиев, В.И.Жильцов, Г.М.Зверев, В.И.Иванов, Ю.А.Кузнецов, Ю.Б.Митюшин, А.Р.Назарьян (зам. главного редактора), В.И.Никишин, А.Г.Олейников, Н.С.Самсонов, В.Д.Степанов, П.М.Стуколов (зам. главного редактора), В.М.Терехов, В.С.Турыгин, В.Е.Фетисов, А.А.Чернышев, А.Т.Яковлев

Научные редакторы: И.В.Кокорева, Т.Р.Крылова, Л.Н.Михайлова Выпускающие редакторы: С.В.Герасименко, Н.И.Кононенко Технический редактор: Г.М.Корнеева Художники: В.Е.Киселев, В.А.Чернецов Цветные фото Б.В.Борисевича Корректоры: Л.П.Козырева, Н.С.Русецкая

Материал на с. 101 подготовила Л.Н.Михайлова

На 1-й с. обложки — РЭМ-фотографии тестовых структур со сложным профилем, сформированных методом рентгеновской литографии в многослойной пленке резиста ПР-6 (см. статью на с. 16).

Подписано в печать 5.02.1990 г. Т—06042 Формат 60×90/8 Объем 13,5 п.л. Уч.-изд.л. 15 Индекс 3833 61 статья, 7 реф. Тираж 4000 Заказ 201 Цена 4 р.

Адрес редакции: 117415, Москва, пр. Вернадского, 39. Телефоны: 432-92-72, 432-92-27

ENTRUM ENTRUM ENTRUM 02/1990

B HOMEPE

• Метод молекулярного наслаивания обладает рядом уникальных свойств и позволяет: получать регулярно построенные твердые вещества с высокой степенью стехиометрии; проводить синтез одного или нескольких химических веществ в заданной последовательности при пониженных температурах и давлениях.

• Для формирования позитивного рельефного изображения в пленке резиста толщиной до 1,5 мкм с разрешением 500 мин/мм рекомендуется применять субмикронную литографию, основанную на локальном модифицировании поверхности пленок резиста.

• Введение специальной термической обработки многослойной резистивной пленки ПР-6 дает возможность формировать топологические элементы со сложным профилем.

● Сравнение эффективности методов геттерирования показывает, что лазерный геттер обладает большей термостойкостью, а геттерирование имплантируемыми ионами вольфрама дает более высокую воспроизводимость результатов.

● Для сборки ИС массовых серий разработаны автоматы присоединения выводов ЭМ-4060П и ЭМ-4020П с усовершенствованной системой технического зрения и расширенными функционально-технологическими возможностями.

● Растровая электронная микроскопия (РЭМ) используется почти на всех этапах разработки и изготовления ИЭТ. РЭМ позволяет измерять поверхностные конфигурации с разрешением 2.10⁻³-2.10⁻² мкм, наблюдать топографические и композиционные неоднородности с пространственным разрешением 5.10⁻² мкм, определять характеристики и дефекты *p*-*n*-переходов с локальностью 5.10⁻² мкм по глубине 1-2 мкм.

● Быстродействующие маломощные цифровые микросхемы транзисторно-транзисторной логики с диодами Шотки серии КР1533 полностью совместимы по уровням с микросхемами серий К155, К555, К583, К584, К589 и превосходят их по быстродействию при меньшей потребляемой мощности.

• Быстродействующие линейные фоточувствительные микросхемы с зарядовой связью К1200ЦЛ7 (71) найдут широкое применение в прецизионной контрольно-измерительной аппаратуре, робототехнике, приборах спектрального анализа, акустооптике.

• Для работы в выходных каскадах видеоусилителей многократных графических дисплеев для САПР БИС разработан кремниевый эпитаксиально-планарный СВЧ n-p-n-транзистор КТ9141А (А1).

•Новый кремниевый лавинно-пролетный диод 4-миллиметрового диапазона позволит существенно улучшить характеристики СВЧ аппаратуры.

СОДЕРЖАНИЕ

Ο	БЗ	OP	ны	E	ст/	AΤ	ьи	

Применение молекулярного наслаивания в технологии ИС. Алехин А. П	3
Молекулярно-пучковая эпитаксия — промышленно ориентированная технология получения нового поколения материалов электронной техники. Румянцева С. М., Щекочихин Ю. М.	6
Современные проблемы сборки и герметизации микроэлектронных устройств. <i>Волков В. А</i> .	11
Субмикронная литография с применением локального модифицирования поверхности пленок резистов. <i>Боков Ю. С., Фролов В. М.</i>	14

ТЕХНОЛОГИЯ

Многослойный резист для субмикронной литографии. Аристов В. В., Дмитриева В. А., Кудряшов В. А., Пфайфер К., Лорковский Х. И.	6
Позитивный фоторезист для СБИС. <i>Суржин В. Н., Котлова Л. Ф.,</i> Григорьева Н. Н	7
Специализированные фоторезисты для сухой фотолитографии. Боков Ю. С., Фролов В. М.	9
Эффективность геттерирования с помощью лазерной обработки и и и онной имплантации. Быковский Ю. А., Альтудов Ю. К., Медалиев А. Х.	2
Геттерирование при имплантации ионами вольфрама. Альтудов Ю. К.,., Быковский Ю. А., Медалиев А. Х., Бжеумихов А. А	3
Изготовление многослойных керамических коммутационных плат. Остроухов Н. Н	4
Автоматизированное проектирование режимов многократной ионной имплантации для создания <i>р</i> -области двухпролетного ЛПД. <i>Шухостанов А. К., Дружинин А. В., Шауцуков А. Г., Аталиков С. Ч.</i>	6
Натяжное устройство АРНТ 8—60 для намоточных станков. <i>Горачек О. В.,</i> <i>Листопад А. Н.</i>	7
Импульсное лазерное упрочнение технологической оснастки и инстру- мента. Шериев В. Х., Жанкишиев И. М., Ашинов С. А.	8
Осаждение многослойных покрытий с использованием магнетронных распылительных устройств. <i>Беришвили З. В., Схиладзе Г. А.,</i> Гадахабадзе И. Г	9
Нанесение полимерных покрытий для коррозионной защиты деталей сложных профилей. <i>Шериев В. Х., Бобылев Д. В., Альтудов Ю. К.</i>	0

ОБОРУДОВАНИЕ

Специальное технологическое

Автоматическое оборудование присоединения выводов ИС массовых серий. <i>Шуньков С. И., Нестерович В. В.</i>	31
Высоковакуумная печь скоростного нагрева. Федоров М. И., Ульянов В. А., Дорохин В. Н.	33
Конвейерная электропечь ИК нагрева "Ангара". <i>Протопопов И.В.,</i> Клепинин Б. Н.	33

Контрольно-измерительная аппаратура

Установка контроля микроразмеров ЭМ-6039. Кравцова В. И., Луговик Ю. Н., Резников В. И., Савиковский А. И., Трапашко Г. А., Хандецкий В. В.	35
Контактные устройства УКФ для высокотемпературных испытаний ИС на пластине. Богданов В. Н., Боянков П. В., Гунич О. И.	35
Прибор для автоматического контроля контактов ИС. <i>Позний А. П.,</i> <i>Рабцун Н. И.</i>	36
Устройство ультразвуковой активации контакта для зондового контроля БИС. Богданов В. Н., Боянков П. В., Гунич О. И.	37
Магнетронное высокочастотное устройство УМВ-2,5	38
Пост откачки СОВ.ВХП-300-003	38
Устройства контроля и индикации вакуума	39
Установка контроля герметичности микросхем УК.ГМ-1200-001	39
Измеритель показателя преломления, Бондаренко А. Н.	40
Тонкопленочный емкостный преобразователь акустических сигналов,	
Луговой В. А.	40

Аналитическое приборостроение

Локальные методы диагностики в микроэлектронике. Аристов В. В. Лукьянов А. Е.	41
Растровая электронная микроскопия в диагностике структур микро- электроники. <i>Аристов В. В. Дремова Н. Н., Лихарев С. К., Рау Э. И.</i>	44

1

Оптимизация коллектора-энергоанализатора РЭМ и метода измерения потенциального рельефа твердотельных структур. Гостев А. В.,	
Рау Э. И	46
Растровая электронно-акустическая микроскопия в микроэлектронике. <i>Гуртовой В. Л., Еременко В. Г.</i>	48
Контроль качества кремниевых структур на растровом электронном микроскопе. <i>Макеев М. А., Якимов Е. Б.</i>	51
Бесконтактный метод контроля электрофизических характеристик полупроводниковых структур. <i>Арзамасцев А. П., Дюков В. Г.,</i> Файфер В. Н	53
Рентгеновская и инфракрасная сканирующая микроскопия и томография. Бочикашвили П. Н., Рау Э. И., Тимонов А. А.	55
Сверхвысоковакуумная отражательная электронная микроскопия для изучения структуры и микроморфологии атомно-чистой поверх- ности кремния, Латышев А. В., Красильников А. Б., Асеев А. Л., Стенин С. И.	58
Метод упругого рассеяния света в диагностике полупроводниковых материалов. Заболотский С. Е., Калинушкин В. П., Мурин Д. И., Плоппа М. Г.	62
Катодолюминесцентный анализ материалов и изделий микроэлектроники при низких температурах. <i>Филиппов М. Н., Кинаев Н. Н.,</i> Познянский В. Л., Сычев А. Г., Логинов Л. В.	65
Аттестация периодических структур с использованием поверхностных акустических волн. [<i>Иноземцев С. А</i>], <i>Куликов В. А., Матвеев Ю. А., Савельев В. П., Тимашев В. В., Федорец В. Н.</i>	68

ИЗДЕЛИЯ ЭЛЕКТРОННОЙ ТЕХНИКИ

Интегральные микросхемы

Быстродействующие маломощные цифровые микросхемы серии КР1533. Прибыльский А. В., Сухопаров А. М., Якубовский В. С.,	
Ельцова С. А.	74
Интегральная микросхема КР1533ЛН2	74
Интегральная микросхема КР1533ЛА7	75
Интегральная микросхема KP1533TP2	75
Интегральная микросхема KP1533TM2	76
Интегральная микросхема КР1533ЛР13,,	76
Интегральная микросхема KP1533TB15	77
Интегральная микросхема КР1533ЛР11	77
Интегральная микросхема КР1533ЛП3	78
Интегральная микросхема КР1533ЛП5	78
Интегральные микросхемы КР1533ТМ8, ТМ9	79
Интегральная микросхема КР1533ЛР4	79
Линейные фоточувствительные микросхемы с зарядовой связью К1200ЦЛ7 и К1200ЦЛ71. <i>Костюков Е. В., Огородников А. Г.,</i> <i>Турилина Л. С.</i> Микросхема КР1810ВК56 — многофункциональный универсальный	80
периферийный контроллер. Джуранюк И.В., Дружук С.В., Парамонов Ю.П.	82
Цифровая БИС музыкального синтезатора с автоматической под- стройкой частоты тактового генератора. <i>Иванковский М. М.,</i> Иванов Б. Н., Ивановский А. В., Лапиньш А. К.	84
Микропроцессорные средства и системы	
Восьмиразрядный КМОП-микропроцессор КМ1821ВМ85А. <i>Кассихин А. А., Катомин Н. М.</i>	93
Контролирующий тест микропроцессорных систем. <i>Горлова Н. П.,</i> Летник Л. А., Самоукин А. Ю.	95
Полупроводниковые приборы	
Кремниевый мощный высокочастотный, усилительный, линейный n—p—n-транзистор типа КТ9126А, <i>Гантман Е. И., Кузнецов Ю. А.,</i> Мазель Е. З., Никольский Е. А., Перельман Б. Л.	96
Кремниевый эпитаксиально-планарный СВЧ n-p-n-транзистор КТ9141А, КТ9141А1. Давыдова Т. И., Кузнецов Ю. А., Миркин А. И., Перельман Б. Л., Шеликов Б. И	97
Кремниевый лавинно-пролетный диод 4-миллиметрового диапазона	
с улучшенными характеристиками, <i>шухостанов А. К., Аталиков С. Ч.,</i> Волков С. И., Шекихачев А. М.	98

ЭЛЕКТРОНИКА ЗА РУБЕЖОМ РЕКЛАМА

101

Специальное технологическое оборудование для применения в приборо- строении, электронном и точном машиностроении Саратовского НИТИ				
Высококачественные защищенные фотошаблоны для микроэлектроники	99			

Основной тенденцией развития микроэлектроники является повышение степени интеграции и быстродействия микросхем за счет уменьшения размеров элементов. Требования получения субмикронных элементов и их воспроизводимости по всей площади полупроводникового кристалла в пределах 5–10% диктуют помимо разработки более совершенных литографических процессов необходимость поиска новых низкотем пературных ($T \leq 500$ K) методов формирования функциональных бездефектных слоев с высокой стехиометрией, а также модифицирования поверхности элементов ИС.

Особенно остро стоят эти проблемы в технологии ИС на основе многокомпонентных полупроводников, где до настоящего времени нерешенными остаются задачи построения качественных межфазных границ раздела, вопросы снижения деградации электрофизических параметров на этих границах раздела и формирования устойчивой высокой воспроизводимости геометрии элементов ИС с размерами 0,8—1,5 мкм.

В настоящее время идет интенсивный поиск новых низкотем пературных технологий получения многослойных полупроводниковых структур, сверхрешеток и высокотемпературных сверхпроводников со стабильными и близкими к предельным параметрами.

УДК 621:315.592

ПРИМЕНЕНИЕ МОЛЕКУЛЯРНОГО НАСЛАИВАНИЯ В ТЕХНОЛОГИИ ИС

А.П.Алехин

Метод молекулярного наслаивания (МН) основан на синтезе твердых веществ на поверхности твердого тела, кристаллическая решетка которого служит матрицей для сборки структурных единиц [1]. Синтезированные вещества с большой точностью повторяют кристаллическое строение материала подложки.

Молекулярное наслаивание как метод обладает рядом уникальных свойств и позволяет:

получать регулярно построенные твердые вещества с высокой степенью стехиометрии;

осуществлять фазовые превращения при более низких энергиях, так как не требуется затрат энергии на зародышеобразование и разрыв прочных химических связей;

достаточно просто управлять химическим составом и строением синтезируемого твердого вещества;

проводить синтез одного или нескольких химических веществ в заданной последовательности при сравнительно невысоких температурах и давлениях.

Разновидностью МН является метод атомарнослоевой эпитаксии, которым был осуществлен синтез тонкопленочных слоев оксидов и сульфидов в технологии полупроводниковых приборов [2, 3]. В настоящее время этот метод используется при низкотемпературном выращивании арсенида галлия [4].

В табл. 1 приведена относительная сравнительная оценка метода МН и некоторых традиционных процессов формирования пленок для микроэлектроники.

Анализ показывает, что МН по совокупности параметров — низкой температуре осаждения, кристаллографической структуре, стехиометрии получаемых пленок, комформности воспроизведения рельефа поверхности, высокой прецизионности роста — имеет наибольшие преимущества. Следует отметить, что при молекулярном наслаивании возможно применение радиацион-

А. П. Алехин — старший научный сотрудник, начальник отдела в НИИФП. В 1970 г. закончил Ленинградский технологический институт им. Ленсовета, инженерный, физико-химический ф-т по специальности "Технология материалов электронной техники". В 1977 г. по окончании очной аспирантуры в МИЭТе защитил кандидатскую диссертацию "Исследование анодных процессов в технологии ИС". Занимается вопросами твердотельной микроэлектроники.

ной стимуляции, что позволяет получить формируемые слои с требуемыми свойствами при температурах, более низких, чем при нестимулированном молекулярном наслаивании.

Рассмотрим возможности конкретного применения МН. Большой интерес представляют практические применения МН в технологии ИС для формирования, стабилизации границ раздела и модификации свойств полупроводникового материала.

Таблица 1

Методы	Темпера- туры	Структу- ра полу- чаемых пленок	Стехио- метрия	Точность задания толщины	Кон- форм- ность на- несения
Процессы испарения*	Высо- кие	Поли- кристал- личе- ская	Низкая	Средняя	Нет
Процессы распыления	То же	То же	Средняя	То же	То же
Химиче- ское осаж- дение из газовой фазы	Средние	Любая	Почти высокая	<u> « </u>	Есть
Молекуляр- ное наслаи- вание	Низкие	То же	Высокая	Очень высокая	То же

Формирование границ раздела в технологии ИС. Основные параметры ИС и функциональных приборов в значительной степени определяются характеристиками границ раздела, которые формируются по правилам структурного и геометрического соответствия [5].

Исходя из этих правил сформулированы требования к технологическим условиям формирования межфазных границ ИС. Так, в случае гетероморфной границы раздела, когда плоские решетки двух или более соприкасающихся фаз должны иметь общую кристаллографическую природу и наиболее близкие геометрические параметры (расхождение по размерам не должно составлять более 15%), задача по ее формированию сводится к удалению неконтролируемых примесей с поверхности матрицы, «залечиванию» дефектов на ее поверхности и нанесению требуемой фазы высокой степени стехиометрии. Для решения этой задачи необходимо реализовать процесс, который можно назвать совмещенным (рис. 1).

Совмещенный процесс включает удаление с поверхности полупроводника неконтролируемых по химическому составу фаз, например, кислородных соединений, образующихся в результате контакта поверхности полупроводника с воздухом и технологическими средами. Далее в едином технологическом цикле проводится стабилизация подготовленной поверхности путем ее обработки легко диссоциирующими соединениями, содержащими атомы галогенов, серы и др. В этом случае происходит «залечивание» разорванных химических связей на поверхности полупроводника с образованием комплексов типа =Si-Cl для кремния, =Ga-SH для арсенида галлия и других, что улучшает и стабилизирует свойства границы раздела. Затем наносится необходимый слой полупроводника или диэлектрика в соответствии со структурными и геометрическими принципами построения межфазных границ раздела.

Метод МН позволяет осуществлять совмещенный процесс при низких температурах ($T \leqslant 500$ K), что очень важно в технологии БИС на кремнии и становится

Рис. 1. Схема совмещенного процесса формирования границы раздела: 1 — полупроводник; 2 — «воздушные» оксиды; 3 — «разорванные» химические связи и дефекты; 4 — «залеченные» дефекты; 5 — функциональный слой

принципиальным в технологии ИС и функциональных приборов на основе многокомпонентных полупроводников. Высокая прецизионность роста при молекулярном наслаивании позволяет управлять им на уровне монослоя ~0,3 нм и добиваться высокой степени стехиометрии наносимого соединения, что значительно повышает качество формируемой границы раздела.

Стабилизация параметров границы раздела. В технологии формирования границ раздела существует проблема стабильности их свойств в зависимости от времени хранения, а также тепловых и радиационных воздействий. Особенно характерна деградация свойств для приборов и ИС на основе многокомпонентных полупроводников — она, в первую очередь, определяется химической нестабильностью межфазных границ раздела. В этом случае скорость деградации можно значительно уменьшить путем подбора и формирования сверхтонкого слоя непосредственно на границе раздела фаз, являющегося химически инертным по отношению к обоим пограничным фазам. Этот промежуточный слой назван барьерным.

К барьерным слоям предъявляются следующие требования. Каждый такой слой должен быть очень тонким (1—2 нм), чтобы не влиять на кристаллографическую природу формируемой границы раздела. Действительно, при таких толщинах барьерный слой наследует природу матрицы, а следовательно, и наносимого функционального слоя, не нарушая тем самым принцип структурного соответствия. Кроме того, барьерный слой должен быть сплошным, чтобы обеспечить наиболее полную химическую пассивацию поверхностей.

Учитывая свойства МН, а конкретнее, очень высокую прецизионность роста порядка 0,3-0,4 нм, быстро достигаемую сплошность покрытия (через 4-6 монослоев) за счет хемосорбционного механизма роста, а также низкую температуру процесса, можно ожидать хороших результатов при применении МН для уменьшения деградации параметров межфазных границ раздела. Например, в настоящее время в микроэлектронике достаточно широко применяются структуры полупроводник типа A_3B_5 , A_2B_6 — сульфид цинка. Однако при наличии на поверхности «воздушных» оксидов или растворенного кислорода в объеме полупроводника граница раздела его с ZnS термодинамически неустойчива, что и наблюдается на практике.

В табл. 2 приведены возможные варианты выбора различных оксидов для барьерных слоев на границе раздела полупроводник A₂B₆ и A₃B₅ с сульфидом цинка. В последней колонке табл. 2 указана пригодность оксида для снижения деградационных эффектов на

Таблица 2

Полупроводник и его свойства	Оксид барь- ерного слоя	Теплота об- разования, кДж/моль	Сингония	Vн.о*× ×10³, нм³	Пригодность в качестве барьерного слоя
А2В6 кубическая, гекса-	BeO MgO ZnO CdO HgO	598,7 601,2 349,0 256,1 90,4	гексагональная кубическая гексагональная кубическая оомбическая	8,0 18,7 21,2 31,0	++ ++ + -+
×10 ³ ~60 нм ³	TIRO	50,4	тригональная	32,5	
А3В5 кубическая, гексаго- нальная, /и.0×10 ³ = ≃(45—68) нм ³	α-Al ₂ O ₃ In ₂ O ₃ α-Ga ₂ O ₃ Sb ₂ O ₃	1675.0 926,7 1077,4 700,0	тригональная кубическая тригональная кубическая, тригональная	42,9 65,2 48,3 83,6	-+ +- -+ -
Основной функцио- нальный слой	ZnS	201,0	кубическая, тригональная	39,5	

* Vи.o — нормированный объем — объем элементарной кристаллической ячейки, отнесенный к количеству ее связей с соседями в кристалле. границе раздела (++ обозначает очень хороший выбор. Полной непригодности оксида в качестве барьерного слоя соответствует знак — —, а остальные обозначения — промежуточные варианты, например, — + означает больше «нет», чем «да»).

Теплота образования оксидов, используемых в качестве барьерных слоев, должна быть по абсолютной величине в несколько раз больше, чем у сульфида цинка. Например, при использовании оксидов Mg, Zn с толщинами ~2 нм, полученных на подложках А2В6 методом МН из оксидов соответствующих металлов и метилового спирта по механизму:

$$A_{2}B_{6} - OH \xrightarrow{+Me(CH_{3})_{2}} A_{2}B_{6} - O - MeCH_{3} + CH_{4} + CH_{3}OH$$

$$A_{2}B_{6} - O - Me - OH + CH_{4} \xrightarrow{\# \tau.a.},$$

уменьшаются деградационные процессы на границах раздела структур A2B6-MeO-ZnS в несколько раз. В данном случае толщина барьерного слоя не должна превышать единиц нанометров во избежание значительного кристаллографического влияния на границе раздела двух фаз.

С другой стороны, при выборе соединений барьерного слоя его структура, обладающая сингонией, аналогичной сингонии как подложки, так и функционального слоя (например ZnS), барьерный слой толщиной десятки и даже сотни нанометров может быть использован для борьбы с деградационными эффектами на границе раздела в качестве буферного сопрягающего слоя, как это делается при создании многослойных эпитаксиальных структур.

Для положительного эффекта при использовании барьерного оксида его нормированный объем должен быть меньше нормированных объемов как полупроводника, так и основного функционального слоя. В этом случае возрастает вероятность «залечивания» сложных дефектов на границах раздела.

Модифицирование поверхностей. Обычно применяемые в технологии микроэлектроники для улучшения свойств методы модифицирования поверхности полупроводников или функциональных слоев ИС связаны с обработкой в водных растворах [6].

Однако процессы модифицирования, происходящие в жидких средах, плохо воспроизводимы и сильно зависят от степени чистоты применения реагентов.

Метод МН позволяет достаточно просто модифицировать поверхности полупроводников для различных целей, например, формировать один или несколько монослоев, содержащих кислород, серу или азот, т.е. проводить оксидирование, сульфидирование или нитридизацию поверхностей. В этом случае гомоморфная граница раздела формируется по правилам соответствия нормированных объемов в системе полупроводник — переходная область — функциональный слой [7].

В табл. З приведены сведения по нормированным объемам кристаллических решеток арсенида галлия и некоторых соединений галлия. В случае

$$\Delta V = V_{\text{h.o}}^{n/n} - V_{\text{h.o}}^{\text{bctp.}\phi.} > 0,$$

где V_{и.0} — нормированный объем полупроводника, а ^{встр.ф.} — нормированный объем встроенной фазы, су-

ществует свободный объем, образующийся при встраивании двух кристаллических решеток полупроводника с собственным оксидом, сульфидом или нитридом и позволяющий «залечивать» дефекты границы раздела определенным типом ионов. Тип «залечивающего» иона определяется величиной разности нормированных объемов полупроводника и встроенной фазы (ΔV). В случае нитридизации подходит практически любой тип

Соедине- ние	Vн.с.×10 ³ , нм ³	Сингония	Соотно- шение нормиро- ванных объемов	Тип «залечи вающего» иона
GaAs	45,2	кубическая		
α -Ga ₂ O ₃	52,1	кубическая	\rightarrow	
β -Ga ₂ O ₃	48,1	тригональная		
β -Ga ₂ O ₃	52,4	моноклинная		
GaS	43,8	гексагональ- ная	+	н [*] , г ⁻
GaN	22,8	гексагональ- Ная	++	галогены, сера и т.д.

«залечивающего» иона, тогда как при сульфидизации при $\Delta V = 1, \tilde{4} \cdot 10^{-3}$ нм³ могут быть применены ионы малых размеров, таких как фтор- и водород-ионы. Явление «залечивания» может происходить и естественным путем из примесей, содержащихся в технологических средах.

Таким образом, в соответствии с правилами объемных соотношений нитридизация и сульфидирование арсенида галия, проведенные методом МН на уровне нескольких монослоев, позволяют значительно улучшить качество границы раздела полупроводник-диэлектрик и уменьшить деградацию электрофизических параметров такой структуры.

Предварительное сульфидирование газообразным сероводородом поверхности арсенида галлия перед формированием барьера Шотки из алюминия также улучшает параметры границы раздела GaAs — металл по сравнению с сульфидированием в водных растворах, содержащих ион S²⁻.

При формировании фотолитографического рисунка на поверхности полупроводниковых пластин с хорошо воспроизводимой геометрией элементов (в пределах 5-10%) большое значение имеет адгезионная способность поверхности к наносимым на нее фоторезистам. Особенно это важно при формировании рисунка в слоях диоксида кремния, где образование силазановых групп на поверхности SiO₂ значительно ухудшает адгезию резистов, а значит, и воспроизводимость геометрии элементов ИС.

Обработка поверхности функциональных слоев ИС алкилами различных соединений методом МН перед нанесением резистов повышает выход годных элементов по геометрии в 2-3 раза.

Подобная обработка при модифицировании верхних слоев фоторезистов повышает качество «взрывной» фотолитографии. Приведенные данные распределения

Рис. 2. Кривые распределения измерений минимального размера элементов, сформированных взрывной фотолитографией: 1 — с модификацией фоторезистов методом MH; 2 — без модификации

минимальных размеров элементов (на фотошаблоне его размеры составляют 1,4×50 мкм), полученных «взрывной» фотолитографией с предварительной модификацией резистов и без нее (рис. 2) свидетельствуют об эффективности применения модификации, при этом значительно увеличивается воспроизводимость геометрии элемента ИС как с рисунка фотошаблона, так и по площади полупроводниковой пластины.

Таким образом, метод МН успешно применен в технологии ИС при формировании гетеро- и гомоморфных границ раздела, для уменьшения деградационных явлений в полупроводниковых структурах, а также модифицирования поверхностей как полупроводников, так и различных функциональных слоев с целью повышения воспроизводимости и выхода годных ИС.

литература

1. Алесковский В.Б. Химия твердых веществ. М.: Высшая школа, 1978. — 350 с. 2. Реѕѕа М., Макеlа R. Characterization of surface

exchange reaction used to grow compound films.- Appl. Phys. Lett., 1981, 38(3), N 1.

3. H y v ä r i n e n J., S o n n i n e n M. Mass spectrometry study of ZnS atomic layer epitaxy process.— J. Crystall growth, 1988, 86, p. 695.

4. N i s h i z a w a J. Molecular Layer Epitaxy.— J. Electrochem. Soc., 1985, 132, p. 1197.

5. Емельянов А.В. Граница раздела — ключ к построению приборов функциональной электроники. Электронная промышленность, 1983, вып. 8, с. 36.

6. B e s s e r R.S. Effect of sodium sulfide treatment on band bending in GaAs.— Appl. Phys. Lett., 1988, 52(20), May, 1707. 7. Емельянов А.В., Егоркин В.В. Связь между

III V зарядом на границе раздела полупроводник А В венный оксид и объемами реагирующих фаз. — ЖФХ, 1985, т. 59, с. 791.

Статья поступила 27 октябоя 1989 г.

УДК 621.315.592.2/.3

МОЛЕКУЛЯРНО-ПУЧКОВАЯ ЭПИТАКСИЯ — ПРОМЫШЛЕННО ОРИЕНТИРОВАННАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ НОВОГО ПОКОЛЕНИЯ МАТЕРИАЛОВ ЭЛЕКТРОННОЙ ТЕХНИКИ

С. М. Румянцева — кандидат химических наук, старший научный сотрудник НИИМВ. Тема ее диссертации: "Получение пленок магнитных полупроводников со структурами шпинели и граната и исследование их физико-химических свойств". В настоящее время занимается вопросами синтеза и исследования гетероэпитаксиальных слоев исверхрешеток полупроводников и диэлектриков. Имеет более 60 публикаций, 7 авторских свидетельств.

Ю. М. Щекочихин — доктор химических наук, профессор МИЭТа, начальник отдела новых технологий НИИМВ. Докторская диссертация на тему "Физико-химические основы техно-логии синтеза новых материалов" была защищена в 1972 г. По окончании МГУ и до 1986 г. работал в Академгородке в ИФП СО АН СССР. Автор более 110 научных работ, имеет 20 авторских свидетельств, многие из которых отмечены дипломами на международных выставках.

С.М.Румянцева

Ю.М.Щекочихин

Приблизившись к достижению предельных размеров элементов ИС — (0,1-0,5 мкм), современная микроэлектроника практически исчерпала реальные возможности многих известных полупроводниковых материалов. Дальнейшая миниатюризация интегральных схем с помощью существующих технологий вступает в противоречие с физическими законами, лежащими в осно-ве работы элементов ИС. Новое поколение более эффективных и менее энергоемких миниатюрных приборов дояжно быть основано на квантово-механических эффектах, с использованием волновых свойств электрона. На основании положений фундаментальной науки [1-3] можно утверждать, что волновая инженерия позволяет синтезировать вещества, отсутствующие в природе.

Согласно квантовой теории, электрон обладает волновыми свойствами в области пространства, размеры которой сопоставимы с длиной волны электрона. Расчетные данные длины волны де Бройля при комнатной температуре для электрона в некоторых полупроводи VI III V никовых соединениях А В и А В имеют значения

от 10 до 60 нм. В частности, длина волны электрона в GaAs составляет около 20 нм. Локализовать электрон в ограниченном объеме GaAs можно с помощью энергетических барьеров. Для арсенида галлия п-типа таким барьером может служить, например, окружение из слоев более широкозонного Ga1-x Alx As.

Если физические размеры (протяженность) энергетического барьера таковы, что обусловливают проявление волновых свойств электрона, то наблюдается эффект туннелирования. В структуре из последовательных тонких слоев GaAs и более широкозонного Ga1-x Alx As электроны будут беспрепятственно переходить из одного слоя в другой, а при увеличении напряжения, приложенного к такой гетероструктуре, туннельный ток будет расти до определенного, «резонансного» напряжения, затем появится область отрицательного дифференциального сопротивления с минимумом при так называемом «долинном» напряжении (рис. 1). По своим абсолютным значениям резонансное и «долинное» напряжения могут быть очень близкими, но эффекты, которые они вызывают, разные, поскольку обусловлены размерным квантованием в структурах с большим размерным ограничением.

Одномерное ограничение потенциальной ямы, описанное выше, принято называть квантовой ямой, двумерное — квантовой нитью, трехмерное — квантовой точкой (рис. 2). При трехмерном ограничении (в квантовой точке) может быть реализовано полное квантование электронов, т.е. квантовую точку можно представить как некий, искусственно созданный суператом, имеющий свой энергетический спектр электронов.

Согласно концепции, предложенной Ватанабе [4], суператом представляет собой гетероструктуру, состоящую из сферического ядра, модулированно-легированного донорной примесью, и окружающей беспримесной матрицы с большим сродством к электрону. Если скачок энергии на гетерогранице достаточно велик, то все доноры в ядре ионизируются, что приводит к образованию почти центросимметричного кулоновского потенциала вне ядра. Этот потенциал удерживает вокруг положительно заряженного ядра электроны, освобожденные от доноров и, таким образом, образуется квазиатомная структура. Примером является ядро AlAs в GaAs. Когда диаметр ядра сравним или меньше длины волны электронов, электронные состояния квантуются не только в радиальном, но и в перпендикулярном ему направлении. При легировании донором Z все Z-электроны связаны кулоновскими силами и эта композиция очень похожа на структуру обычных атомов, с одной лишь разницей, что ядро суператома намного больше, чем ядро обычного атома.

Минимальный диаметр ядра определяется пределом растворимости легирующей примеси S и ее атомным номером Z: $d=d_0(6Z/\pi kS)^{1/3}$, где d_0 — постоянная кристаллической решетки материала ядра; k — число донорных мест в элементарной ячейке ядра.

Так, для ядра AlAs в GaAs в случае S=0,01% минимальный размер ядра суператома составляет 4,8 нм для Z=14 (суперкремний) и 7,6 нм для Z=50 (суперолово). В зависимости от предела растворимости примеси в материале ядра при разумном диаметре ядра ($d\approx10$ нм) величина Z может превосходить порядковые номера всех известных элементов таблицы Менделеева. Кроме того, конфигурация заполнения электронами энергетических уровней в суператоме может сильно отличаться от обычной последовательности уровней в атоме с тем же зарядом.

Реальным аналогом суперкристалла является упорядоченная система из микровыделений пересыщенного твердого раствора легирующей примеси в матрице кристаллического (или стеклообразного, аморфного) полупроводника.

Таким образом, с использованием размерных ограничений квантовых ям можно создавать твердотельные структуры, в которых помимо периодического потенциала кристаллической решетки имеется дополнительный (одномерный, двумерный или трехмерный) потенциал, период которого существенно превышает постоянную кристаллической решетки полупроводников. Структуры из чередующихся слоев полупроводников, имеющие периодичность потенциала в направлении, перпендикулярном поверхности, называют плоскими одномерными сверхрешетками (ОСР), другими словами, ОСР — это периодическая совокупность большого количества одинаковых квантовых ям (узкозонных слоев), разделенных туннельно-прозрачными широкозонными слоями.

В зависимости от типа энергетического профиля структуры в направлении, перпендикулярном поверхности, одномерные сверхрешетки (СР) разделяют на композиционные, легированные и легированные композиционные сверхрешетки [5].

Энергетический спектр сверхрешетки определяется решением уравнения Шредингера, содержащего как потенциал кристаллической решетки, так и потенциал СР (Δr). Так как период СР значительно превышает постоянную кристаллической решетки, энергетические зоны полупроводника исказятся при наложении Δr лишь вблизи краев. Энергетический спектр ОСР резко анизотропен. В направлениях X, Y, перпендикулярных оси одномерной сверхрешетки, потенциал СР действует слабо, а движение в направлении Z будет соответствовать движению в системе с периодом d (период сверхрешетки): $E(k) = \hbar^2 k_1^2/(2m) + E_i(k_z)$, где $k_z \leqslant \pi/d$.

При заданном k_1 дисперсионная кривая $E(k_2)$ массивного полупроводника разбивается на минизоны Бриллюэна $E_i(k_2)$, разделенные мини-щелями при $k_2 = 0$ и $k_2 = \pm \pi/d$.

Одномерные композиционные сверхрешетки (КСР), составленные из тонких (1—60 нм) слоев различных полупроводников, можно разделить на несколько типов. КСР первого типа — это система квантовых ям для носителей тока, которые отделены друг от друга кванто-

выми барьерами $E_{g cp} = E_{g}^{I} - E_{g}^{II} = \Delta E_{c} + \Delta E_{v}$. Впервые такая композиционная СР была получена методом молекулярно-пучковой эпитаксии в 1973 г. Чангом и Есаки с использованием слоев GaAs и Ga1-x Alx As, для которых $\Delta E_{c} = 300$ мэВ и $\Delta E_{v} = 0,85$ мэВ.

Величины дискретных уровней энергии электронов для отдельно взятой квантовой ямы в сверхрешетке GaAs—GaAlAs в зависимости от толщины слоя GaAs можно оценить по уравнению $E_{c_i}(d_1) \approx \hbar^2 \pi^2 (j+1)^2 / (2mc^1 d_1^2)$, где j=0,1,2...

При периоде сверхрешетки d=10 нм, величина мини-зоны проводимости составляет $\Delta E_{\rm co} \approx 50$ мэВ. Ширина мини-зоны в системе квантовых ям ($d=d_1+d_{11}$) зависит от ширины барьера d_{11} . Если эта величина невелика ($d_{11} \leqslant 5$ нм), то мини-зоны имеют достаточную ширину для движения электрона вдоль оси СР. Таким образом, изменение толщины слоев полупроводников приводит к изменению зонной структуры сверхрешетки. В зависимости от взаимного расположения E_c и E_v че редующихся слоев в КСР могут быть реализованы любые энергетические профили с прямоугольными квантовыми ямами (рис. 3). В композиционных сверхрешетках второго типа потолок валентной зоны одного полупроводника находится по энергии выше, чем дно зоны проводимости другого, поэтому можно ожидать,

Рис. 2. Размерные ограничения потенциальных ям: a — квантовая яма, δ — квантовая нить, δ — квантовая точка

что на границе раздела электроны будут перетекать из валентной зоны одного полупроводника (например, GaSb) в валентную зону другого (InAs).

Примером таких КСР, полученных к настоящему времени, являются СР, состоящие из ряда чередующихся слоев соединений $A^{II}B^{V}$ (GaAs/GaAlAs, GaP/ /GaAsP, AlSb/GaSb/InAs и т.д.), $A^{II}B^{VI}$ (CdTe/ZnTe, CdTe/HgTe, ZnTe/ZnSe и т.д.) и других полупроводников (CdTe/ α -Sn, PbS/PbCdSSe).

Легированные сверхрешетки (ЛСР) представляют собой периодическую последовательность слоев одного и того же полупроводника, легированных донорами и акцепторами.

Необычные электронные свойства ЛСР вытекают из специфического характера потенциала СР, который модулирует (изгибает) края зон исходного материала таким образом, что электроны и дырки оказываются пространственно разделенными. Эффективной ширине запрещенной зоны в ЛСР можно придавать любое

Рис. 3. Варианты расположения краев зоны проводимости и валентной зоны относительно вакуумного уровня на гетерогранице различных полупроводников и в КСР: *a* — КСР I типа, *б* — II типа, *в* — III типа (политипная)

значение от нуля до ширины зоны исходного материала путем подбора уровней легирования толщины слоев. Выбирая параметры ЛСР, можно значительно увеличить рекомбинационные времена жизни носителей тока. Пример ЛСР на GaAs приведен на рис. 4, A. Aналогичные ЛСР получены на основе Si, PbTe, Pb1-x Gex Te, Pb1-x Snx Te.

В обычных КСР полупроводниковые слои не легированы, благодаря чему квантовые ямы можно считать прямоугольными. Если один из полупроводников, например широкозонный, легировать донорной примесью, то прямоугольные потенциальные ямы трансформируются в ямы параболического типа (рис. 4,6). Так как край зоны проводимости лежит ниже энергетических уровней доноров в Ga1-x Alx As, то электроны, покинувшие доноры в слоях Ga1-x Alx As, могут диффундировать в нелегированные слои GaAs, пространственно разделяясь с донорами, породившими их. Такие сверхрешетки называются композиционно-легированными (КЛСР). Если концентрация носителей в узкозонном полупроводнике не слишком велика и электроны испытывают лишь упругое рассеяние, то в такой квантовой яме электроны ведут себя, по сути дела, как двумерный газ и могут существовать, не рекомбинируя, долгое время. Пример КЛСР — структуры $i-GaAs/nGa_{1-x}Al_xAs$, InGaAs/nInGaAs/InAlAs/ /nInGaAs. Подвижность особенно возрастает, если область барьера вблизи раздела не легируется. При кон-центрациях примесей больше 10¹⁶ см⁻³ вымерзание носителей тока отсутствует и в модулированно легированной КСР можно получить концентрацию электронов больше 10^{12} см⁻² и величину подвижности электрона больше 10^6 см²/В·с, тогда как в объемных полупроводниках предел подвижности составляет 10⁴ см²/В·с [5, 6].

Канал с высокой подвижностью носителей тока можно получить и на одиночном гетеропереходе, легируя широкозонный полупроводник и оставляя нелегированным узкозонный. Такие гетероструктуры используются для высокоскоростных переключателей типа HEMT [6—8], для производства которых фирма Picogiga [8, 9] выпускает структуры, содержащие до семи эпитаксиальных нелегированных и легированных кремнием слоев GaAs и AlGaAs, полученных методом МПЭ на подложках полуизолирующего арсенида галлия диаметром до 76 мм. Однородность свойств HEMT-структур не хуже 2-5%, плотность овальных дефектов — $800-300 \text{ см}^{-2}$ и менее.

Прежде чем перейти непосредственно к описанию технологии изготовления гетероэпитаксиальных структур (ГЭС) и сверхрешеток, укажем на одно очень важное условие эффективности их работы. Граница раздела между узкозонным полупроводником, в котором реализуется квантовая яма, и широкозонным, играющим роль потенциальной стенки, должна быть атомно-гладкой с минимальной плотностью поверхностных состояний. На атомно-гладкой границе исключается рассеяние и рекомбинация носителей, на размытой границе эффективная ширина потенциальной ямы для электронов увеличивается и квантования не наблюдается.

Для получения очень тонких слоев полупроводниковых соединений в настоящее время широко используют различные варианты газофазной эпитаксии (ГФЭ) и молекулярно-пучковой эпитаксии (МПЭ), в том числе метод молекулярного наслаивания (МН). В газофазной эпитаксии пары летучих компонентов или их соединений доставляют к подложке потоком газа—носителя при давлении 10^5 —1 Па. При таком давлении концентрация молекул в 1 см³ потока составляет $3 \cdot 10^{19}$ —4 · 10¹⁴ см⁻³, длина свободного пробега молекул мала, поток «вязкий».

В методе МПЭ давление в ростовой камере составляет $10^{-7}-10^{-5}$ Па, при этом концентрация молекул в потоке менее 5 \cdot 10⁹ см⁻³, а длина свободного пробега молекул диаметром 0,5 нм составит сотни и даже тысячи метров.

Ясно, что при высоком давлении потока в ГФЭ молекулы газа—носителя, молекулы примесей и продукты разложения летучих соединений, испытывая бесконечное число столкновений между собой, могут частично замуровываться растущим слоем. Для упорядочения кристаллической структуры растущего слоя необходимы довольно высокие температуры. Возникают трудности при послойном наращивании тонких (<10 нм) слоев: если перекрывается поток одного реагента, то для того, чтобы сформировать поток другого реагента, нужно систему промыть, но за это время сформированная граница успеет адсорбировать чужеродные атомы и не будет атомно-чистой и атомногладкой.

Метод ГФЭ нашел применение для получения гете-

Ш у Ш у роэпитаксиальных структур соединений A B, A B В качестве источников компонентов используют их летучие гидриды, хлориды, металлоорганические соединения (MOC). Температура роста при ГФЭ определяется температурой пиролиза летучего соединения и теплотой реакции образования синтезируемого соединения. В реальных процессах ГФЭ соединений

А В температура роста составляет 600—800°С, сое-

и VI динений A B — 450—600°С. Из-за довольно высоких температур синтеза метод ГФЭ не позволяет получать резкие границы в КСР на основе соединений, имеющих высокие коэффициенты взаимодиффузии, таких,

например, как соединения А В . Этого недостатка лишен метод МПЭ, позволяющий осуществлять синтез соединений при существенно более низких температурах, чем ГФЭ [7].

Кроме того, метод МПЭ позволяет получать эпитаксиальные слои диэлектриков CaF_2 , SrF_2 , BaF_2 и их твердых растворов, что открывает прямой путь к созданию трехмерных интегральных схем (ТИС), в которых компоненты формируются не только по горизонтали, как в современных ИС, но и по вертикали.

В МПЭ используют твердые (жидкие) источники компонентов в виде элементов (например, Ga, In, Cd, Zn, As, Te) или конгруэнтно испаряющихся соединений (CaF₂, SrF₂, BaF₂). Контейнеры с этими веществами помещают в герметичный объем ростовой камеры с давлением $\leq 10^{-7}$ Па и испаряют эти вещества путем резистивного нагрева контейнеров.

Однако метод твердофазных (жидких) источников имеет ограничения: нельзя использовать вещества, имеющие высокое давление пара при комнатной температуре (например Hg, газообразные вещества); трудно испарить вещества, имеющие низкое давление паров; при высоких температурах испарения вещества загрязняются материалом контейнеров, и вступают в химические реакции с газами остаточной атмосферы ростовой камеры (О2, СО, СН4 и др.). Поэтому появились различные модификации метода МПЭ, суть которых состоит в использовании потоков летучих веществ, вводимых в герметичную ростовую камеру через вакуум-плотные клапаны, выдерживающие большой перепад давлений в источнике летучего компонента и в камере. Метод с использованием газов или паров химических соединений получил название химической пучковой эпитаксии (ХПЭ). Этот метод сочетает достоинства методов ГФЭ и МПЭ [10].

Методы МПЭ и ХПЭ характеризуются малой скоростью роста (~1 мкм/ч), что позволяет получать слои толщиной до долей нанометра, и относительно низкой температурой роста, что ограничивает диффузионное размытие гетерограниц.

Эти методы позволяют

— резко прерывать молекулярные потоки с помощью механических заслонок, что необходимо для создания периодических СР и *p*—*n*-переходов;

получать атомно-гладкую поверхность растущего слоя;

— анализировать кристаллическую структуру, химический состав и условия роста слоев с помощью методов атомной, ионной и электронной спектроскопии и дифракции электронов;

 перемещать образцы сразу после выращивания слоев (без контакта поверхности с атмосферой) на другие вакуумные процессы: нанесение диэлектрика, ионную (электронную) литографию, имплантацию, металлизацию и т.д.;

— автоматизировать процесс роста по заданной программе.

Достоинством метода МПЭ является экологическая чистота. Так, например, при непрерывной работе установки в течение месяцев все отходы накапливаются в вакуумном герметичном объеме и механически удаляются при вскрытии камеры.

Технологические преимущества МПЭ и ХПЭ с наибольшей экономической эффективностью могут быть реализованы в ближнем космосе. При использовании специально ориентированных выносных зонтичных экранов, ограждающих комплекс МПЭ—ХМЭ от выделений и других неконтролируемых воздействий космического корабля, вакуум в ростовом пространстве может достигать 10⁻¹² Па.

В 1986 г. в рамках НАСА в США был создан специальный центр космической вакуумной эпитаксии [11], в задачи которого входит внедрение методов МПЭ — ХПЭ в космическую технологию, использующую преимущества околоземного пространства (неограниченную скорость откачки; бесконечно большой СВВ — объем без стенок, микрогравитацию, присутствие атомного кислорода и водорода, необходимых для получения как полупроводниковых материалов, так и высокотемпературных сверхпроводников).

Для осуществления молекулярно-пучковой эпитаксии в СССР разработан магистрально-модульный комплекс ЦНА [12], в состав которого входят модули подготовки подложки, молекулярно-пучковой эпитаксии, ионно-лучевого осаждения, металлизации и диэлектрических покрытий. Модули объединены в один комплекс высоковакуумной загрузочно-транспортной системой, позволяющей перегружать пластины из модуля в модуль без разгерметизации. При отработке технологических процессов, реализуемых в комплексе ЦНА, к ней могут быть подсоединены модули с аналитическими средствами: оже-спектроскопии, квадрупольной масс-спектрометрии, дифракции быстрых электронов, ионная пушка для очистки и послойного анализа подложки.

Основные характеристики комплекса ЦНА

Предельное остаточное давление в технологических
модулях, Па
Предельное остаточное давление в вакуумном
транспортере, Па 1. 10 ⁻⁶
Диаметр подложки, мм
Число одновременно загружаемых подложек
Число молекулярных источников в
камере роста
Температура нагрева подложки, °С 200-850
Температура молекулярных источников
с резистивным нагревом, °C 200-1450

Установка ЦНА разработана для изготовления ГЭС

на основе соединений А В, однако следует признать, что она является реальным прототипом промышленноориентированной МПЭ установки, на основе которой можно разрабатывать модели оборудования, предназ-

наченные для эпитаксии Si, соединений A B, диэлектриков, а также моделей с использованием газов и МОС для реализации ХПЭ.

При эксплуатации ростового модуля установки ЦНА он был модернизирован и оснащен лазерным интерферометром для контроля толщины и оптических характеристик растущих слоев [13, 14]. На этой установке получены гетероэпитаксиальные слои CdTe, ZnTe, твердые растворы и сверхрешетки на их основе (рис. 5). В качестве подложек использовали пластины полуизолирующего GaAs (001) и α -Al₂O₃ (0001). Большое значение при отработке процессов получения CP приобретает метод математического моделирования, позволяющий учесть негативное влияние несоответствия периодов решеток, коэффициентов термического расширения, размытия границ из-за взаимной диффузии компонентов и выбрать оптимальные условия синтеза для каждого конкретного сочетания веществ.

Рис. 7. Энергия запрещенной зоны (a) и период кристаллической решетки (б) полупроводников и диэлектриков, имеющих кубическую структуру Эксперименты и расчеты показали, что сверхрешетки CdTe/ZnTe с резкими границами раздела могут быть получены при скоростях роста менее 1 мкм/ч, при температурах не выше 270°C, а толщина слоев в такой упруго-напряженной сверхрешетке, свободной от дислокаций несоответствия из-за большого различия периодов решеток CdTe и ZnTe, не должна превышать 4,5 нм.

Получение СР при более высоких температурах или длительный ее нагрев при наращивании на нее других слоев, как, например, при наращивании «толстого» слоя СdTe (3 мкм) на сверхрешетку CdTe/ZnTe (см. рис. 5) приводит к полному диффузионному размытию сверхрешетки и образованию твердого раствора Cd1-x Znx Te за счет взаимной диффузии компонентов.

Размерные ограничения в напряженной сверхрешетке могут приводить к изменению ширины запрещенной зоны, что особенно сильно проявляется при трехмерном ограничении потенциальных ям или барьеров. И VI Оценочные расчеты (рис. 6) для A B показывают, что трехмерное ограничение областей этих соединений

может приводить к заметному увеличению E_g . Интересным выводом оценочных расчетов является диаграмма зонных структур гетеропереходов «полупроводник—диэлектрик». Так, например, величина разрыва краев валентных зон диэлектрика CaF₂ и большинства полупроводников составляет 5,3—7,3 эВ.

Такие материалы перспективны для конструирования приборов, работающих в УФ области спектра.

В настоящее время методами МПЭ и ХПЭ получены ГЭС и сверхрешетки почти всех полупроводниковых соединений АВ, АВ и их твердых растворов,

вых соединений A B, A B и их твердых растворов, эпитаксиальные диэлектрики $MF_2(M=Ca, Sr, Ba)$ (рис. 7), сверхпроводники, металлы (Fe, Cr) и интерметаллические соединения. Большое практическое значение имеет тот факт, что все это многообразие гетероструктур получено на подложках Si, GaAs, InSb, InP, сапфира, т.е. на подложках, выпускаемых промышленностью, имеющих большие размеры, высокое качество кристаллической структуры, доступных и относительно недорогих.

Метод МПЭ дал новый импульс развитию материапов на основе соединений А В, которые недостаточно широко используются в микроэлектронике из-за от-

сутствия качественных монокристаллов A B, а также из-за трудностей создания эффективных p-n-переходов методом ГФЭ или другими высокотемпературными методами синтеза.

Анализ сообщений о получении ГЭС и сверхрешеток убедительно свидетельствует о том, что метод МПЭ превращается в промышленно-ориентированную экологически чистую технологию синтеза новых материалов микроэлектроники, с использованием которой могут быть созданы сверхскоростные малошумящие ИС на НЕМТ-транзисторах, быстродействующие ИС на полевых МДП-транзисторах, высокочувствительные матричные многоцветные фотоприемники ИК диапазона, светодиоды, инжекционные лазеры с низкими пороговыми токами. Реальной становится перспектива построения трехмерных интегральных схем, сочетающих в себе эпитаксиальные слои различных полупроводников, разделенных эпитаксиальным диэлектриком, с использованием монокристаллической кремниевой подложки. Методом селективной МПЭ на одной подложке могут быть созданы интегральные оптоэлектронные цепи, состоящие из лазеров, волноводов, детекторов, модуляторов и усилителей.

ЛИТЕРАТУРА

1. Келдыш Л.И. ФТТ, 1962, 4, с. 2265.

2. E s a k i L., T s u R.T.— IBM J. Res. Dev., 1970, vol. 14, p. 61.

3. Бейт Р.Т. На пороге нового поколения транзисторов.-В мире науки, 1988, № 5, с. 66-71.

4. Watanade H., Inoshita T. Superatom: a novel concept in materials science.- Optoelektronics - devices and technologies, 1986, vol. 1, N 1, р. 33—39. 5. Херман М. Полупроводниковые сверхрешетки:

Пер. с англ. М.: Мир, 1989. 240 с.

6. Нараянамурти В. Кристаллические полупроводниковые гетероструктуры/Пер. статьи Narayanamurti V Physics Today, Oct., 1984, р. 24. — Физика за рубежом 1986, сер. А.— М.: Мир, 1986, с. 100—121.

7. Молекулярно-лучевая эпитаксия и гетероструктуры: Пер. с англ./Под ред. Ченга Л., Плога К.— М.: Мир, 1989.— 584 с. 8. C h o A.Y. Current state and future challenge in molecular

beam epitaxy (MBE) recearch.— J. Cryst. Growth, 1989, vol. 95, N 1-4, p. 1-10.

9. L i n h N.T. Picogiga, Paris, France.

10. T s a n g W.T. From chemical vapor epitaxy to chemical beam epitaxy.- J. Cryst. Growth, 1989, vol. 95, N 1-4, p. 121-131.

11. Space Vacuum Epitaxy Center. University of Houston. Houston, Texac 77204-5507 (рекламный проспект).

12. Проспект «Магистрально-модульный комплекс для молекулярно-лучевой эпитаксии «ЦНА». V/O «Electronintorg» SSSP, Moscva, 1989.

13. Shcekochihin J.M., Rumyanceva S.M., R u d n e v V.S. MBE growth and investigation of heteroepitaxial CdTe, ZnTe layers and CdTe-ZnTe superlattices. Third Intern. Symposium of Molecular Beam Epitaxy.— Velico Tarnovo, Bulgaria, 1989, Oct. 2—7, p. 58.

14. Румянцева С.М., Дударев А.Т., Щекочих и н Ю.М. Молекулярно-пучковая эпитаксия теллурида кадмия на арсениде галлия. — Электронная промышленность, 1989, № 8, c. 14-19.

Статья поступила 26 декабря 1989 г.

доцент

УДК 621.3.049.77.002.2

СОВРЕМЕННЫЕ ПРОБЛЕМЫ СБОРКИ И ГЕРМЕТИЗАЦИИ ΜИКРОЭЛЕКТРОННЫХ **УСТРОЙСТВ**

В.А.Волков

Предлагаемые расчетно-экспериментальные оценки равновесного давления паров воды внутри корпуса и классификации летучих веществ, выделяемых полимерными герметизирующими элементами, по их критическим температурам позволяют усовершенствовать технологию сборки электронных устройств.

С повышением конструктивной и функциональной сложности микроэлектронных устройств (МЭУ) традиционные приемы сборки и герметизации не удовлетворяют возрастающим требованиям. Например, после герметизации в вакуумноплотные корпуса наблюдаются факты форсированных отказов изделий при эксплуатации и хранении, хотя массообмен между внешней и внутрикорпусной средами отсутствует [1]. Наблюдаются также непредсказуемые повышения температуры точки росы (Тр) внутри корпуса и многие другие аномалии, связанные с образованием конденсата на твердых поверхностях (коррозионные процессы, токи утечки, ослабление оптических эффектов и др.). Эти явления наблюдаются и при заполнении корпусов су-хим азотом до давления (1,2—1,3) 10⁵ Па (температура росы азота —60°С и ниже).

Подобные факты можно объяснить на основании предположения о существенном изменении исходного количественного и качественного химического состава среды в корпусе при хранении и эксплуатации МЭУ. Было установлено наличие влаги в первоначально обезвоженных средах корпусов [2, 3] или одновременно влаги и широкого спектра других летучих веществ [4-8].

Состав среды внутри корпуса начинает изменяться непосредственно после герметизации изделий, что связано прежде всего с наличием в корпусах источников

летучих веществ, а не с поступлением компонентов из внешней среды, как это принято считать в настоящее время [1, 9].

В качестве источников летучих веществ в коопусах выступают сорбционно-емкие и, следовательно, влагоемкие полимерные материалы и полимерсодержащие конструктивные элементы (ПСКЭ) на их основе, например печатные платы, клеевые соединения, конструкционные пластмассовые детали и т.д. Так, в блоках объемом 2—5 дм³, как правило, содержатся ПСКЭ с полимерными материалами 20—30 наименований и более. В каждом ПСКЭ растворено то или иное количество влаги, определяемое коэффициентом растворимости воды (h), объемом его полимерной части и давлением паров воды в среде хранения. При этом максимальное влагосодержание имеют ПСКЭ, хранившиеся до сборки в нормальных условиях, т.е. при влажности 65% и температуре 20°С, минимальное — ПСКЭ, формируемые непосредственно при сборке (клеевые соединения, защитные покрытия и др.).

Неустойчивая после герметизации система «ПСКЭ — сухая внутрикорпусная среда» со временем приходит в равновесное состояние в результате протекающих в ней десорбционно-сорбционных процессов. Равновесное давление (Ро) влаги в корпусе и определяет значение температуры росы (Тр) системы.

МИЭТа на кафедре "Микроэлектроника", специалист в области технологии и производства электронно-вычислительных средств. В 1987 г. В. А. Волков зашитил докторскую диссертацию по волросам герметизации и сборки электронных приборов. Эта тема остается предметом его исследований и в настоящее время.

В. А. Волков

Практически задача сводится к тому, чтобы в корпусах расчетными и конструктивно-технологическими средствами обеспечивались бы требуемые значения этих параметров.

Для малых значений Tp (например, менее 273 К) давление Рр можно определить по формуле

$$P_{p} = \frac{m_{BA}}{V_{\kappa} (K_{r} h_{r} + K_{\pi} h_{n}^{*})}$$
$$h^{*} = (\sum_{i=1}^{n} (h_{i} V_{i})/V_{n}),$$

где твл — масса влаги в корпусе, равная влагосодержанию всех ПСКЭ: 1'к объем корпуса; Кр, Кп — относительные объемы газовой среды и полимерных частей всех ПСКЭ в корпусе; hr, hi. hu* коэффициенты растворимости влаги в газовой среде, і-ом ПСКЭ и гипотетическом ПСКЭ (интегральный) соответственно; Vi, Vn — объемы полимерной части i-го ПСКЭ и полимерных частей всех ПСКЭ.

Расчетно-экспериментальными методами исследовалась кинетика изменения давления Рр и температуры Тр в корпусах объемом 2 дм³, содержащих широко используемые при изготовлении ПСКЭ полимерные материалы: стеклотекстолит, полиимидную пленку, поливинилхлорид, эпоксидную смолу, эластомер и фторопласт-4. Общий объем всех материалов

Рис. 1. Изменение температуры T_{ρ} в герметичном блоке, содержащем невысушенные ПСК без цеолита и с цеолитом: 1 -невысушенные ПСК (начальная $T_{\rho} = -60^{\circ}C)$; 2 - несысушенные ПСК и цеолит (начальная $T_{\rho} = +3,2^{\circ}C$)

Рис. 2. Номограмма для определения равновесного давления P_{ρ} паров воды и температуры T_{ρ} точки росы в корпусах МЭУ различного объема и влагосодержавния: объем корпуса 0.5 дм³ (кривая 1); 1.0 (кривая 2); 2.0 (кривая 3); 3.0 (кривая 4); 4.0 (кривая 5); 10.0 (кривая 6)

Рис. 3. Изменение молярного содержания индивидуальных растворителей с относительной летучестью f в смеси этилцеллозоль—этиловый спирт—ацетон (соотношение 0,33:0,33:0,33) по мере их испарения и восполнения смесью того же (исходного) состава: 1—этилцеллозоль (j=0,048); 2 этиловый спирт (j=0,254); 3— ацетон (j=1)

в корпусе составлял 98,4 см³, их влагосодержание (масса влаги, Мвл) — 0,9535 г. Для измерения температуры *Тр* использовался датчик сорбционного типа [10, 11].

Как показывают данные табл. 1 и рис. 1, в сухой среде корпуса (*T*_P = Параметры среды внутри корпуса до и после сушки ПСКЭ

Состояние ПСК /	Исходная <i>т</i> вл в ПСКЭ,	Параметры среды в условиях равновесия				
	r	<i>т</i> ва в ПСКЭ, г	<i>М</i> ва в газе, г	<i>Р</i> р, Па	7 _{р.} °С	Относитель- ная влаж- ность, %
До сушки После сушки	0,9535 5,13 · 10 ⁻⁴	0,9326 5,02 · 10 ⁻⁴	0,0209 0,11 · 10 ⁻⁴	1,49 - 10 ³ 1,07	13 —60	63,6 4,6 · 10 ⁻²

Таблица 2

Десорбционно-сорбционные процессы при установлении равновесия в корпусе объемом 2 дм³

Вид ПСКЭ, газовая среда	$\frac{h}{V, cM^3} \qquad \frac{P_{XP, \Pi a}}{\varphi, \%}$	Исходная <i>М</i> ва, г	Равновесное состояние		Изменение <i>т</i> вл, г	
			Рρ, Па	<i>М</i> ВА, Г		
Провод МГТФ, де- тали из по- лиэтилена	$\frac{1\cdot10^{-5}}{50}$	$\frac{1,52\cdot10^3}{65}$	0,0057		0,0024	—0,0033 (десорбция)
ПСКЭ на основе эпок- сисмолы	$\frac{5\cdot10^{-4}}{50}$	$1,17\cdot10^3$ 50	0,2193	6,35 · 10²	0,1192	—0,1001 (десорбция)
Прокладки из картона, х/б ткань	$\frac{5\cdot10^{-3}}{50}$	$5,85 \cdot 10^2$	1,0963		1,1919	+0,0956 (сорбция)
Газовая среда в кор- пусе	$\frac{9,87 \cdot 10^{-7}}{1850}$	$\frac{0}{0}$	0		0,0078	+0,0078

Таблица 3

Классификация компонентов парогазовой среды

Компоненты внутри- корпусной среды	Значения Ткр, °С
Воздух, N ₂ , He, Ar, O ₂ , H ₂	меньше —60
CO ₂ , NO ₂ , C ₂ H ₄ , C ₃ H ₆ , C ₃ H ₈	от —60 до +125
Органические раство- рители Cl2, S, SO2, NH3, H2O	выше +125

= -60°С), при размещении в нем предварительно хранившихся в нормальных условиях и невысушенных ПСКЭ, быстоо устанавливается влажность, близкая к влажности хранения ПСКЭ. Это объясняется малой влагоемкостью газовой среды корпуса (h_r=9,87 · 10⁻⁷ г/см³ мм рт.ст.). Исходная низкая температура Тр может быть обеспечена размещением корпусе расчетной массы цеолита в (6,35 r) или тренировочной термовакуумной сушкой ПСК (например, при температуре 85°С н давлении 13,3 Па в течение 48 ч).

На рис. 2 представлена номограмма, полученная расчетным путем и позволяющая определять давление P_{ρ} и температуру T_{ρ} для корпусов различного объема и ПСКЭ различного влагосодержания.

В ПСКЭ, находящихся в области гигроскопического увлажнения, перенос влаги осуществляется под действием разности химического потенциала в направлении градиента концентрации влаги. В этом случае химический потенциал парообразной влаги может быть выражен через влагосодержание и температуру [12], поэтому условием равновесного состояния рассматриваемой системы может служить влагосодержание каждого ПСКЭ, соответствующее равновесному давлению паров воды Рр в парогазовой среде. При размещении в корпусе полимерных материалов с различной удельной влагоемкостью (т.е. различными значениями коэффициентов h) определяющим фактором в десорбционно-сорбционных процессах является давление паров воды в условиях их хранения Рхр. Данные табл. 2 иллюстрируют случай десорбции влаги из материалов с малым влагосодержанием и ее сорбции материалом с большим влагосодержанием в переходном режиме при установлении равновесного давления паров воды в корпусе.

Серьезной проблемой является разработка коррозионно-стойких МЭУ [13—15]. При ее решении следует иметь в виду, что в реальных МЭУ ПСКЭ могут выделять не только влагу, но и широкий спектр других летучих веществ, вид и масса которых зависят от состава и концентрации в полимерных частях остаточных растворителей, непрореагировавших низкомолекулярных летучих веществ и летучих продуктов деструкции.

Определяющим является их классификация по значениям критических температур (Ткр), химической (коррозионной) активности и степени полярности. Летучие вещества с температурами Ткр ниже минимальной рабочей температуры МЭУ не способны образовывать конденсированные фазы во всем рабочем температурном диапазоне.

Совместными термогравиметрическими, масс-спектрометрическими и макетными исследованиями показано, что особенно опасна конденсация в корпусе коррозионно-активных веществ. Из табл. 3 видно, что именно эти вещества (сера, хлор и их соединения, вода, аммиак) и все широко применяемые в микроэлектронике органические растворители имеют температуры Ткр >125°С [16]. Следует отметить, что образование конденсата из полярных растворителей не только повышает паразитные утечки в корпусах, но и способствует диссоциации нейтральных примесей, повышая концентрацию активных ионов.

Коррозия пленочной алюминиевой разводки наблюдается при наличии внутри корпуса клея МПФ-1, поливинилхлорида или вулканизованной резины, выделяющих при 85°С помимо влаги аммиак, хлор и серу соответственно. Поэтому при разработке коррозионно-стойких изделий эти материалы применять не рекомендуется, а корпуса следует заполнять сухими газами — азотом, аргоном, воздухом.

При работе с растворами полимеров особое значение приобретает проблема остаточных растворителей. В условиях производства вязкость растворов постепенно повышается за счет улетучивания растворителей и восполнение испарившихся растворителей с целью поддержания рабочей вязкости или концентрации растворов надо производить с учетом масс испарившихся индивидуальных растворителей, т.е. их летучести. Как видно из рис. 3, при нарушении этого условия, что обычно и наблюдается на практике, с увеличением числа разбавлений в растворе постепенно повышается концентрация труднолетучих растворителей и при неизменном режиме сушки конструктивных элементов возможно повышение непредсказуемого брака изделий.

Применение растворов полимеров-клеев (МПФ-1, типа БФ) в различных элементах сопряжено с трудностями: при длительной (мягкой) сушке они малоэффективны, а при форсированном («жестком») режиме в них образуются сквозные каналы, раковины и т.д. Растворы полимеров рекомендуется применять в качестве защитных покрытий, имеющих большую поверхность испарения.

Тщательной сушке должны подвергаться материалы на основе полимеров, синтез которых протекает с выделением воды, а применение связано с использованием растворителей. Типичным материалом такого класса являются фенольноформальдегидные смолы, широко распространенные в электронной промышленности при изготовлении клеев, пластмасс, слоистых пластиков (стеклотекстолитов) и т.л.

Как видно, эффективно повышать коррозионную стойкость элементов МЭУ и снижать температуру Тр в корпусах можно конструктивно-технологическими средствами.

При конструировании МЭУ следует: - избегать применения растворов полимеров, сорбционно-емких материалов

(целлюлозных и хлопчатобумажных непропитанных и пропитанных), материалов, способных выделять коррозионно-активные вещества (клея МПФ-1, поливинилхлорида, мастики ЛН и др.);

— применять материалы нагревостойкостью не ниже класса В (рабочая температура более 125°С):

— заполнять корпуса сухим газом с низкой температурой точки росы;

- использовать в качестве резервирования расчетные массы влагопоглотителей и селективных геттеров.

Основные требования к технологическому процессу сборки и герметизации МЭУ:

— режимы термообработки ПСКЭ должны разрабатываться с учетом величин поверхностей испарения летучих веществ и обеспечения расчетного остаточного влагосодержания в них, соответствующего заданной температуре точки росы; применять высокоинтенсивные источники нагрева (ИК, ВЧ) для сушки растворов полимеров следует только для конструктивных элементов с открытой поверхностью испарения растворителей (например, для покрытий);

— для снятия ограничений по числу загружаемых на термообработку ПСКЭ необходимо использовать вентилируемые термошкафы:

- термообработку ПСК следует проводить до степени структурирования поли-мерной части 98—99%;

 после термообработки до момента сборки ПСКЭ следует хранить в накопителях с инертным сухим газом и температурой точки росы не выше допустимой:

— после сборки до герметизации блоки необходимо сушить в тренировочном термовакуумном режиме.

На кафедре микроэлектроники МИЭТа разработаны методики расчетноэкспериментальной оценки влагосодер-жания в корпусах МЭУ различного объема и с неограниченной номенклатурой полимерных материалов, которые дают возможность конструктивно-технологическими средствами регулировать в корпусах температуру Тр. На основе этих работ разрабатываются принципы регулирования микроклимата внутри корпуса герметизированных коррозионностойких МЭУ.

литература

1. В олков В.А. Сборка и герметизация икроэлектронных устройств. М.: Радио и связь, 1984, с. 144. 2. Merret R.P., Sim S.P., Bryant T.P. A simple method of using the die of an integ-

rated circuit to measure the relative humidity in side its encapsulation.— 18-th Ann. Proc. in side its encapsulation.— 18-th Ann. Proc. Reliability Phys. Conf., 1980, p. 17—25. 3. S t r o c h l e D. On the penetration of gases and water wapor into packages with ca-

vities and a maximum allowable lead rates.— 15-th Ann. Proc. Reliability Phys. Conf., 1977, ρ. 101—106.

4. Обзоры по электронной технике: Влага в корпусах полупроводниковых приборов и микросхем/А.А.Коваленко, А.А.Теверов-ский, Г.И.Епифанов.— М., 1982.— Вып. 2, c. 64.

5. Файнштейн С.М. Обработка и защита поверхности полупроводниковых при-боров.— М.: Энергия, 1970, с. 296.

6. Effect of moisture and electronic packab. Effect of moisture and electronic packaging exhalates on the electrical conductivity of epoxy laminate/D.B.Singh, A.Kumar, V.P.Tayal, B.Sanyal.— Journal of materials science, 1988, N 23, р. 3015—3025.
7. Волков В.А., Шаманае в С.В., Ильина Т.В. Исследование деструкции микоралевта.

конструкционных материалов микроэлект-

ронных устройств.— Электронная техника. Сер. 10. Микроэлектронные устройства, 1983, вып. 2, с. 48—51.

8. Исследование парогазовыделений конструкционных клеев и компаундов, используемых в презозлектоических излелиях/ В.Г.Григорьян. Н.А.Осипов, Р.В.Попонова и др.— Электронная техника. Сер. 5. Радио-детали и радиокомпоненты, 1988, вып. 2, с. 62—64.

9. В о л к о в В.А. Особенности конструирования и производства микроэлект-ронных устройств в полых корпусах. Электронная техника. Сер. 10. Микро-электронные устройства, 1983, вып. 1, c. 62-67.

10. Михайлов М.М. Влагопронииаемость органических диэлектриков.— М.— Л.: Госэнергоиздат, 1960, с. 164. 11. Бутурлин А.И., Крутовер-цев С.А., Чистяков Ю.Д. Микро-

Інк. Зару-9. _____ А в с тяков Ю.Д. Микј электронные датчики влажности.— Зај бежная электронная техника, 1984, № с. 3—54.

12. Шитулин В.А., Крутовер-ев С.А., Восьмерик Ю.И. Измерение влажности в герметизированных бло-ках.— Материалы семинара: Проблемы конструирования, производства и обеспечеконструирования, производства и обеспече-ния качества интегральных радиоэлект-ронных устройств.— М.: 1989, с. 169—173. 13. Лыков А.В. Теория сушки.— М.: ГЭИ, с. 471. 14. Роздзял П. Технология герметиза-ции элементов РЭА: Пер. с польск./ Под

ред. В.А.Волкова.— М.: Радио и связь, 1981, с. 304.

15. B a i l y A.B. Conceptual model of alu-U.S. Dept. Comm. NBS Spec. Publ., 1982, N 400-72, ρ. 129-148.

16. Воропаева С.И., Павло-вич Э.Г., Щербакова Н.Н. Влияние коррозионной активности полимерных ма-териалов на работоспособность ИЭТ.— Электронная промышленность, 1988, вып. 6, c. 9-11.

17. Краткий справочник физико-химиче-ских величин/Под ред. А.А.Ревделя, А.М.Пономаревой.— Л.: Химия, 1983, c. 232.

Статья поступила 28 ноября 1989 г.

Алма-Атинский филиал Новосибирского государственного союзного проектного института приглашает на работу высококвалифицированных технологов, имеющих опыт проектной или производственной работы в области полупроводниковых и электронных приборов, радиоэлектронной аппаратуры.

ГАРАНТИРУЕТСЯ ПРЕДОСТАВ-ЛЕНИЕ КВАРТИР В 1990 ГОДУ.

Для рассмотрения кандидатур необходимо выслать личный листок по учету кадров, автобиографию, справку о составе семьи, отчет о работе по указанной специальности, фото 5×6 см.

Адрес: 480008, г. Алма-Ата, ул. Байзакова, 275-а, филиал нгспи. Телефоны: 42-82-66, 42-93-31.

СУБМИКРОННАЯ ЛИТОГРАФИЯ С ПРИМЕНЕНИЕМ ЛОКАЛЬНОГО МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ПЛЕНОК РЕЗИСТОВ

Основным процессом в производстве ИС остается фотолитография. Разрешение серийного оборудования для экспонирования фоторезиста длинноволновым УФ и видимым излучением, определяемое критерием Рэлея, теоретически составляет 0,5-0,6 мкм. Использование коротковолнового УФ излучения позволяет снизить эту величину до 0,15-0,2 мкм. По производительности, стоимости, эксплуатационным расходам это оборудование предпочтительнее, чем современные рентгеновские, электронно- и ионно-лучевые установки экспонирования. При разработке новых технологических методов формирования резистивных масок фотолитография может стать перспективной для производства ИС с субмикронными размерами элементов.

Известные технологические решения, повышающие разрешение фотолитографии, значительно проигрывают традиционной схеме процесса в простоте и производительности и по этим характеристикам не имеют существенного преимущества по сравнению с электроно- или рентгенолитографией.

В связи с этим, например, не нашла применения в массовом производстве ИС технология фотолитографии с применением трехслойного фоторезиста. Проблема поиска и разработки методов фотолитографии, обеспечивающих субмикронное разрешение в толстых пленках резистов на рельефных и отражающих актиничное излучение подложках при непрерывном снижении стоимости бита информации очень актуальна в настоящее время.

Одним из наиболее перспективных является метод локального модифицирования экспонированных пленок фоторезистов и ионно-плазменного проявления скрытого модифицированного изображения [1]. В основе метода лежит использование известных в химии высокомолекулярных соединений, реакций модифицирования полимеров, впервые примененных в электронолитографии [2].

Сущность метода заключается в следующем (рис. 1):

 сильное поглощение актиничного излучения резистом и запись скрытого изображения в тонком поверхностном слое относительно толстой пленки резиста;

 фиксирование скрытого изображения путем модифицирования экспонированных (или, напротив, неэкспонированных) областей пленки резиста неорганическими или элементоорганическими соединениями, вступающими

Ю.С.Боков,

В.М.Фролов

Ю.С.Боков — кандидат технических наук, начальник отдела в НИИФП, специалист в области химической технологии микроэлектроники. Автор 70 научных статей, двух монографий: "Введение в фотолитографию" (1977 г.), "Фото-, электроно-, рентгенорезисты" (1982 г.), имеет 100 авторских свидетельств.

В. М. Фролов — ведущий специалист в области фотолитографии и плазмохимии, работает в НИИТТ, в 1990 г. защитил кандидатскую диссертацию по фотолитографическим процессам. Автор многих публикаций в журналах "Электронная промышленность" и "Электронная техника".

с резистом в химическое взаимодействие (локальное модифицирование);

 проявление скрытого модифицированного изображения анизотропным ионно-плазменным травлением немодифицированных областей пленки, сохранивших первоначальный элементный состав.

Выявлены следующие особенности метода локального модифицирования, обусловливающие перспективность этого варианта субмикронной фотолитографии [3]:

Рис. 1. Схема метода локального химического модифицирования фоторезиста и плазменного проявления модифицированного изображения: 1 — резист, 2 — подложка, 3 актиничное излучение, 4 — пары модифицирующего реагента, 5 — скрытое модифицированное изображение, 6 — защитный слой SiO₂

 исключение образования стоячих волн и неконтролируемых засветок резиста излучением, отраженным от поверхности подложки вследствие применения сильнопоглощающего актиничное излучение фоторезиста;

 возможность использования высокоразрешающих оптических систем с высокой числовой апертурой, так как глубина экспонирования может быть менее 0,5 мкм, и толстая пленка фоторезиста имеет квазипланарную поверхность;

 возможность повышения контраста скрытого изображения специально подобранными режимами модифицирования и независимо – условиями ионно-плазменного проявления;

 простота и высокая производительность в отличие от большинства известных технологий субмикронной фотолитографии.

Базовым процессом метода является локальное химическое модифицирование (ЛХМ). В данном случае оно заключается в замене одних функциональных групп полимера-пленкообразователя резиста другими без изменения его структуры и длины цепи, в результате чего значительно изменяется стойкость резиста к воздействию кислородной плазмы. Обычно для процесса ЛХМ применяется реакция силилирования: введение триметилсилильной группы в звенья полимерной цепи вместо активного атома водорода. В качестве силилирующего реагента обычно используют гексаметилдисилазан (ГМДС).

Газофазное модифицирование (силилирование ГМДС) серийного фоторезиста ФП-051МК и сополимера метакриловой кислоты (МАК) с метилметакрилатом (ММА) в соотношении МАК: :ММА=40:60 осуществлялось в специально разработанном реакторе, представляющем собой герметично закрывающуюся емкость из нержавеющей стали с нагреваемым до заданной температуры днищем, на котором помещалась пластина с силилируемой пленкой резиста.

Жидкофазное модифицирование осуществлялось погружением обрабатываемых пластин в ГМДС, термостатированный при заданной температуре, время выдержки в ГМДС составляло 3–30 мин; перед извлечением пластин из ГМДС проводилось его охлаждение до температуры 30–40°С добавлением в емкость ГМДС, находящегося при комнатной температуре.

Ионно-плазменное проявление проводилось в стандартном реакторе реактивного ионно-плазменного травления с плоскопараллельными электродами.

Формирование силилированного фоторезиста рельефа пленках 8 ФП-051МК. Повышенная проницаемость экспонированных областей фоторезиста ФП-051МК для ГМДС достигалась ранее термообработкой пленок фоторезиста после экспонирования при температуре ~ 200°С, а само модифицирование выполнялось при комнатной температуре в парах ГМДС, содержащих небольшое количество растворителя. Однако присутствие растворителя приводило к деформациям силилированного изображения вследствие набухания экспонированных областей пленок в процессее силилирования. (Предельное разрешение не

Рис. 2. Негативный рельеф, сформированный в пленке фоторезиста ФП-051МК

Рис. 3. Позитивный рельеф в двухслойной структуре, сформированный жидкостным проявлением фоторезиста ФП-051MK

Рис. 4. Негативный рельеф, сформированный в пленке электронорезиста МАК/ММА

Рис. 5. Позитивный рельеф в пленке фоторезиста ФП-051МК

превышало 500 лин/мм. Чтобы избежать деформации, необходимо исключить растворитель из процесса газофазного силилирования, а это требует повышения температуры силилирования до 100±5°С. При этой же температуре проводится жидкофазное силилирование. Предельное разрешение повысилось до 1000 лин/мм (рис. 2). Формирование позитивного рельефа в двухслойной пленке фоторезиста ФП-051МК (планаризующий слой был структурирован тер-мообработкой при 250⁰С) включает тер мообработку экспонированной пленки и жидкостного проявления позитивного рельефа в смеси органического растворителя с ГМДС с последующим реактивным ионно-плазменным травлением планаризующего слоя в среде кислорода. В данном случае одновременно с проявлением происходит силилирование поверхности проявленного рельефа в формирующем слое двухслойной пленки, который служит маской для РИПТ планаризующего слоя в кислородной плазме (рис. 3). Недостатком данного метода является необходимость практически полного фотолиза светочувствительного компонента фоторезиста в процессе экспонирования формирующего слоя во избежание появления вуали при проявлении. Практическое разрешение метода равно 500 лин/мм.

Формирование силилированного рельефа в пленках электронорезиста на основе сополимера МАК/ММА. Поскольку сополимер МАК/ММА деструктирует при облучении потоком ускоренных электронов или коротковолновым УФ ($\lambda <$ 300 нм) излучением, то при газофазном силилировании формируется негативное силилированное изображение. Для повышения селективности диффузии ГМДС в экспонированные области пленки целесообразно выполнить предварительное структурирование полимера при 250°С (происходит межмолекулярная циклизация с отщеплением воды и образованием ангидридных связей). Электронно-лучевым экспонированием при дозе (1-2) 10⁻⁴ Кл/см², силилированием экспонированной пленки в парах ГМДС при 115-120°С в течение 2-3 минут и ионно-плазменным проявлением негативного силилированного изображения формировали маски с шириной линий 0,3 мкм в составе решетки с периодом 1,0 мкм в пленках толщиной до 1,5 мкм (рис. 4). Ширина изолированных линий также была равна 0,3 мкм, что свидетельствует об устранении действия эффектов близости (корректировка дозы для экспонирования изолированных линий и решеток не проводилась).

Так как силилированный полимер растворим в силилирующем реагенте, то можно использовать жидкостное проявление позитивного рельефа в формирующем слое двухслойной структуры, планаризующий слой которой непроницаем для ГМДС. Экспонированные при дозе (1-2) 10 ⁴ Кл/см² области пленки сополимера МАК/ММА полностью растворяются в ГМДС при температуре 120^оС в течение 1-2 мин.

Недостатком метода является низкая чувствительность резистов. Для электронолитографии этот недостаток принципиален, так как в тонком поверхностном слое пленки электронорезиста, где происходит силилирование, поглощается всего несколько процентов энергии электронного потока (при обычной для электронолитографии величине ускоряющего потенциала 15–25 кВ). Поэтому более перспективным для применения в электронолитографии является другое направление метода локального модифицирования, основанное на прививке кремнийорганических мономеров, содержащих ненасыщенные связи, к долгоживущим радикалам и перекисям в экспонированных областях пленок резистов (так называемая привитая радикальная постполимеризация) [4].

Высокая энергия квантов коротковолнового УФ излучения, превышающая энергию химических связей в полимерах, и возможность обеспечить практически полное поглощение излучения в тонком поверхностном слое экспонируемого резиста в сочетании с ожидаемым в первой половине 90-х годов появлением мультипликаторов с рабочими длинами волн 193 и 249 нм позволяют сделать вывод о чрезвычайной перспективности метода локального модифицирования именно в коротковолновой УФ литографии, ориентированной на производство ИМС с топологическими нормами 0,5 мкм и менее.

Формирование позитивного рельефного изображения экспонированием коротковолновым УФ излучением с последующим силилированием неэкспонированных областей пленки и плазменным травлением экспонированных участков основано на известном эффекте структурирования поверхностного слоя пленок новолачных смол и фоторезистов, в результате чего резко снижается проницаемость экспонированных областей пленок для диффузии силилирующего реагента. В частности, в пленках фоторезиста ФП-051MK, экспонированных через кварцевый фотошаблон излучением дуговой ртутно-ксеноновой лампы ДРКс-500 и далее без шаблона длин-новолновым УФ и видимым излучением лампы ДРШ-350, силилированных и проявленных в кислородной плазме в обычных для данного фоторезиста условиях, получен позитивный рельеф с разрешением 500 лин/мм (рис. 5). В данном случае достигнутое относительно невысокое разрешение определялось несовершенством системы экспонирования (неколлимированное излучение, неконтролируемый контакт с фотошаблоном). Следует ожидать, что с появлением совершенного оборудования для проекционного экспонирования фоторезиста коротковолновым УФ излучением метод локального силилирования и плазменного проявления окажется в состоянии обеспечить разрешение в толстых пленках резистов лучше 1000 лин/мм независимо от наличия и характера рельефа на поверхности подложки.

литература

1. Обзоры по электронной технике: Технология субмикронной фотолитографии: современное состояние, перспективы развития и применения/Ю.С.Боков, А.Б.Невский, В.М.Фролов.— М., 1988,— Вып. 6. Сер. 3. Микроэлектроника.— 35 с

35 с. 2. А.с. № 1132.746 (СССР)./Ю.С.Боков, М.К.Берестенко, А.Е.Бочканов и др.— Способ получения негативной маски. 1982, Б.И. № 31, 1988. 3. БоковЮ.С., Бочканов А.Е., Фролов В.М. Локальная модифика-

3. Боков Ю.С., Бочканов А.Е., Фролов В.М. Локальная модификация поверхности пленок резистов новый метод субмикронной литографии. — Электронная промышленность, 1988, вып. 4, с. 8—11.

4. Бочканов А.Е., БерестенкоМ.К., Боков Ю.С. Новый вариант полностью сухого процесса литографии.— В кн.: I Всесоюзная конф. «Физические основы твердотельной электроники». Тезисы докладов.— Том В.— Л., 1989, с. 47.

Статья поступила 22 ноября 1989 г.

УДК 621.3.049.77.002:778

МНОГОСЛОЙНЫЙ РЕЗИСТ ДЛЯ СУБМИКРОННОЙ ЛИТОГРАФИИ

д-р физ-мат. наук В.В.Аристов, В.А.Дмитриева, канд.физ-мат.наук В.А.Кудряшов, д-р хим.наук К.Пфайфер, д-р хим.наук, проф. Х.И.Лорковский

Институт проблем технологии микроэлектроники и особо чистых материалов АН СССР. Центральный институт органической химии АН ГДР.

Введение специальной термической обработки многослойной резистивной пленки ПР-6 дает возможность формировать субмикронные элементы со сложным профилем.

Сложный, например *Т*-образный профиль, можно получеть и в однослойном позитивном резисте, при использовании фотоэлектронной экспозиции только нижнего или верхнего слоя рентгенорезиста [1, 2], или при специальной обработке резиста в хлорбензоле или других химических веществах [3].

В электронно-лучевой литографии эта задача традиционно решается применением двухслойных резистов, слои которых отличаются молекулярным весом и соответственно чувствительностью [4]. Такие системы позволяют получать разные скорости растворения верхнего и нижнего слоев резиста на проэкспонированных участках и соответственно управлять профилем структур.

Позитивный фоторезист ПР-6 (сополимер метилметакрилата с метакриловой кислотой) дает хорошие результаты в субмикронной литографии или традиционном однослойном его использовании [5]. Однако возможности его значительно расширяются, если из него формируют многослойные пленки, которые подвергаются специальной термообработке, направленной на модификацию этих слоев резиста в «терполимер» с заданной чувствительностью, что позволяет формировать элементы Т-образнопрофиля. Преимуществом резиста ПР-6 по сравнению с традиционными двухслойными системами является, вопервых, простота процесса формирования элементов в нем — один резист, один проявитель для обоих слоев и соответственно один цикл проявления и, во-вторых, возможность произвольного (в достаточно широких пределах) выбора соотношения чувствительности слоев простым изменением режимов термообработки

Основные характеристики ПР-6 приведены на рис. 1. Резист облучался характеристическим рентгеновским излучением МоLa ($\lambda = 0,54$ нм), а тестовые структуры были сформированы в резисте при экспонировании через рентгеношаблоны с полимерной мембраной и золотым маскирующим покрытием излучением CuLa ($\lambda = 1,33$ нм).

Дозовые характеристики измерялись после проявления резиста в течение одной минуты в проявителе I, представляющем собой смесь метилэтилкетона и метилизобутилкетона (1:2), и в тече-

ние двух минут в проявителе II (смесь метилэтилкетона и этоксиэтанола в соотношении 1:4). Чувствительность резиста ношении 1:4). Чувствительность резиста составляет 300 Дж/см³, а контраст в этих случаях 2,5 и 2 для проявителей I и II соответственно. На рис. 2 приведена РЭМ-фотография тестовой структуры с периодом 2 мкм, сформированной в пятимикронной пленке резиста при экспонировании излучением CuLa. Структуры имеют вертикальные стенки, на которых видны вертикальные полосы размером ~0,1 мкм, повторяющие неровности края маскирующего покрытия, наличие которых указывает на высокую разрешающую способность резиста. Та-ким образом, резист ПР-6 обладает хорошими характеристиками при использовании его в качестве однослойного резиста в рентгеновской литографии.

В основе использования резиста ПР-6 для формирования элементов со сложным профилем лежит зависимость его чувствительности от температуры термообработки. Эта зависимость позволяет создавать многослойные пленки резиста с изменяющейся от слоя к слою чувствительностью, что делает возможным формирование сложного профиля.

Зависимости скорости растворения проэкспонированного резиста в проявителе от температуры его термообработки приведены на рис. 3 и 4, для проявителя I и II соответственно. Величина экспозиции меняется от 70 до 220 Дж/см³ при использовании проявителя I и от 110 до 310 Дж/см³ для проявителя II. Диапазон термообработки выбран 360—500 К. Следует отметить, что после сушки при температуре ниже 360 К резист полностью смывается в проявителе на необлученных участках, а при температуре свыше 500 К с ним происходят необратимые изменения и он становится нерастворимым в использованных проявителях.

Рост скорости растворения (см. рис. 4 и 5) объясняется тем, что при нагреве сополимера метакрилата с метакриловой кислотой до температур свыше 400 К образуются межмолекулярные ангидридные мостики и резист превращается в «терполимер» [6], состоящий из метилметакрилата, метакриловой кислоты и метакрилового ангидрида. Чувствительность такого «терполимера» несколько выше, чем у исходного сополимера, а рост чувствительности определяется степенью модификации последнего и соот ветственно связан с температурой и продолжительностью термообработки.

Самой важной особенностью резиста ПР-6 является возможность нанесения

Рис. 5. Тестовая структура с периодом 2 мкм, сформированная в трехслойном резисте

Рис. 6. Тестовая структура с периодом 2 мкм, сформированная в двухслойном резисте

Рис. 7. Тестовая структура, сформированная в трехслойном резисте толщиной 4 мкм

его в несколько слоев. Наносимые слои сушатся последовательно при одинаковой температуре. При этом, если низлежащие слои прошли стандартную термообработку, то вновь наносимый слой не растворяет низлежащие и результирующая толщина пленки практически равна произведению толщины единичного слоя на число слоев. Воемя сушки низлежащих слоев в несколько раз больше, чем верхних. Было установлено, что увеличение времени термообработки (при данной температуре) приводит к незначительному снижению скорости растворения, а дополнительная термообработка (для нижних слоев) слабо сказывается на характеристиках резиста. На рис. 5 приведена РЭМ-фотография тестовой струк-туры, сформированной в трехслойном резисте, слои которого сушились при одинаковой температуре. На боковой поверхности структур отчетливо видны границы раздела между слоями резиста, т.е. слои не перемешиваются. Ширина структур при переходе от слоя к слою меняется незначительно, это означает, что чувствительность всех этих слоев примерно одинакова.

Сильная зависимость скорости растворения резиста ПР-6 от температуры термообработки и возможность формирования из него многослойных пленок позволяют получить многослойные пленки резиста с изменяющейся чувствительностью. При этом отношение скоростей растворения резиста в слоях может варьироваться непрерывно в диапазоне от 1:1 до 1:2, что значительно расширяет технологические возможности метода.

Очевидно, что температура сушки верхнего слоя должна быть меньше, чем нижнего, чтобы не изменялась чувствительность последнего. При этом легко получаются системы, в которых скорость растворения верхнего слоя может быть сделана как больше, так и меньше, чем у нижнего (минимум скорости раство-рения наблюдается при 430 К). В первом случае нижний слой нужно сушить при температуре ~430 K, а верхний при 380—410 К. Во втором случае температура для нижнего слоя составит ~470 К, а для верхнего ~430 К. РЭМфотография такой тестовой структуры с периодом 2 мкм и шириной у основания менее 0,5 мкм приведена на рис. 6.

Стоуктура имеет большое отношение высоты к ширине и нависающий профиль края, пригодный для формирования структур методом «lift-off». Структуры, сформированные в трехслойном резисте, чувствительность слоев у которого понижается по мере приближения к подложке, приведена на рис. 7. Они имеют Т-образный профиль на каждой из границ раздела пленок. Эти две фотографии демонстрируют те широкие возможности, которые обеспечивают применение многослойных резистов на основе ПР-6 при формировании структур со сложным профилем края. Аналогичные результаты были получены и пои электоонно-лучевом экспонировании таких многослойных резистов. Однако в этих случаях результаты не столь наглядны, что связано со значительной неоднородностью распределения экспозиции по объему в толстых слоях резиста [7].

ЛИТЕРАТУРА

1. Aristov V.V., Kudrya-

A r i s t o v V.V., K u d r y a-sh o v V.A., S v i n t z o v A.A. Photoelectron exposure of X-ray resists.— Microelectronic Engineering, 1985, N 3, p. 597—600.
 Investigation of structure profiles in negative resists./ V.V.Aristov, T.B.Borsenko, V.A.Kudryashov et al.—Microelectronic Engi-neering, 1986, N 5, p. 329—334.
 Y o s h i a k i N u m u r e. The mecha-nism of overhapm formation in disaide/new-nism of overhapm formation in disaide/new-

Y o s h i a k i N u m u r e. The mechanism of overhang formation in diazide/novolak photoresist film by chlorobenzene soak process. — Journ. of Vac. Sci. Technol., 1986, vol. B4, N 1, p. 15—21.
 4. M a t s u m u k a M., T s u t s u i K., N a r u k e Y. Submicrometer lift-off line with T-shaped cross-sectional form.— Electron Letters, 1981, vol. 17, N 12, p. 429—430.
 5. Über den Temperatureinflub anf Löslichkeit und Strahlungsreaktivitat von Methacrylsauremethylester. Methacrylsaure. Conolyme.

rytsauremethylester- Methacrytsaure-Copolyme-risaten/ K.Pfeiffer, R.-P.Krüger, B.Rapsch, H.-J.Lorkovski.— Plaste und Kautschuk, 1987, vol. 34, N 4, p. 153—154. 6. Speed enhancement of PMMA resists/ W.Moreasu, D.Merrit, W.Moyer et al.— Journ. of Vac. Sci. Technol., 1979, vol. 16, p. 1989—1992. 7 A state of the state rylsauremethylester- Methacrylsaure-Copolyme-

7. Aristov V.V., Kudrya-shov V.A., Chukalin A.V. Electron beam lithography resolution upon exposure of siperthiek resist layers.— Microelectronic Engineering, 1989, N 9, p. 231–233.

Статья поступила 25 сентября 1989 г.

УДК 621.3.049.77.002:776

ПОЗИТИВНЫЙ ФОТОРЕЗИСТ ДЛЯ СБИС

В.Н.Суржин, Л.Ф.Котлова, Н.Н.Григорьева

Разработан новый позитивный фоторезист с повышенной разрешающей способностью и низким уровнем дефектообразования для высокоточной фотолитографии при изготовлении БИС.

Повышение функциональной сложности, степени интеграции и площади кристалла изделий электронной техники требует применения позитивных фоторезистов с разрешающей способностью до 0,8 мкм и малым уровнем дефектообразования в технологическом цикле обработки пластин с фоторезистом.

Несмотря на большую номенклатуру выпускаемых промышленностью фоторезистов, они не удовлетворяют требованиям производства СБИС. Основными недостатками являются: малая разрешающая способ-ность (≥1,5 мкм); плохая адгезия к гидрофильным материалам подложки; низкая термостойкость маски фоторезиста при дублении, что требует применения дополнительных обработок; недостаточная устойчивость к плазмохимическому травлению; малая механическая

прочность при контакной печати; недостаточная светочувствительность для проекционной печати.

Все эти недостатки обусловлены тем, что в состав фоторезистов входят тяжелолетучие растворители типа: метилцеллозольвацетат, этилцеллозольвацетат, ксилол, диглим, диметилформамид с температурой кипения 130—162°С. При температуре сушки фоторезиста 110°С эти растворители невозможно удалить из объема пленки фоторезиста. Хорошо смешиваясь с водой, растворители обусловливают гидрофильность границы фоторезист-подложка и всего объема пленки фоторезиста, становятся причиной снижения адгезии фоторезиста к подложке и устойчивости фоторезиста в проявителе, поиводят к снижению химической и плазмохимической устойчивости маски фоторезиста, уменьшению термоустойчивости маски фоторезиста при дублении. Чтобы обеспечить необходимые значения этих характеристик, иногда необходимо проведение дополнительных операций, например, применение усилителя адгезии требует операций нанесения адгезива, плазмохимического «допроявления» фоторезиста в среде кислорода. Это приводит к значительному увеличению цикла прохождения партии и времени пребывания пластин в производственных помещениях с высоким уровнем запыленности и, как следствие, к увеличению дефектности при фотолитографии.

Особое требование предъявляется к светочувствительности фоторезиста. Увеличение светочувствительности возможно при уменьшении содержания светочувствительного продукта в композиции фоторезиста, но это ведет к резкому снижению устойчивости фоторезиста в проявителе и уменьшению его разрешающей способности. При наличии остатков растворителя в пленке фоторезиста такой прямой и эффективный путь повышения светочувствительности затруднен.

Введение тяжелолетучих растворителей в композицию фоторезиста обусловлено необходимостью уменьшения микронеровности поверхности пленки фоторезиста за счет снижения скорости испарения растворителя из верхнего слоя пленки во время формирования.

Таким образом, улучшение только одной характеристики фоторезиста за счет введения тяжелолетучих растворителей приводит к ухудшению всех остальных его параметров. Сложность решения противоречивых задач при создании новых композиций фоторезиста, особенно для проекционной печати, приводит к тому, что практическая разрешающая способность фоторезистов недостаточно высока.

Для оптимизации состава фоторезиста и улучшения его фотолитографических характеристик было предложено полное удаление растворителей из пленки фоторезиста при сушке, что значительно увеличивает светочувствительность и разрешающую способность, и разработан специальный состав высококонтрастного проявителя с низкой концентрацией проявляющего реагента, обеспечивающий минимальную скорость разрушения в проявителе необлученного фоторезиста при приемлемой скорости проявления, порядка 0,05—0,1 мкм/с. При полном удалении растворителей из пленки фоторезиста обеспечивается также воспроизводимость процессов экспонирования, проявления и размеров элементов фотокопии, высокая скорость полимеризации и термоустойчивость маски фоторезиста при дублении, обеспечивается высокая устойчивость фоторезиста при химическом и плазменном травлении. Большой запас по значению величины контраста проявления за счет высококонтрастного проявителя позволяет увеличить светочувствительность фоторезиста на 20-30% за счет уменьшения количества светочувствительного продукта в композиции фоторезиста.

Разработка технических решений и критериев комплексной оптимизации фоторезиста, проявителя, технологии обработки фоторезиста проводилась на широко используемом фоторезисте ФП-383.

Целенаправленное изменение состава композиции

Характеристика	ФП-383Н	ФП-383
Разрешающая способность для регулярной структуры с применением высококонт- растного проявителя, мкм	0,8—1,0	1,2—1,5
Разрешающая способность для нерегулярной структу- ры, мкм	0,6—0,8	0,9—1,0
Коэффициент контрастно- сти проявления, ед.	до 3000	до 1000
Глубина микронеровности пленки, нм	20—60	80—120
Разрешающая способность при дублении на 130±5°С (термоустойчивость), мкм	1,0—1,2	1,5—2,0
Подтравливание пленки окисла кремния толщиной 1,3 мкм на сторону, мкм	0,5—1,0	1,2—1,5
Устойчивость маски при плазмохимическом травле- нии ФСС толщиной 1,5 мкм обеспечивается при обра- ботке	ПО* или ТО** 130°С	ПО+ТО 180°С
Воспроизводимость размера элемента фотокопии, мкм	±0,15	±0,3

* ПО — плазменная обработка фоторезиста в азоте; ** ТО — термическая обработка в ИК печах в воздухе.

фоторезиста позволило добиться существенного повышения его потребительских свойств. Новый фоторезист ФП-383Н разработан в комплексе с высококонтрастным проявителем, высокотемпературной сушкой в среде азота до 125°С, высокотемпературным дублением в среде воздуха до 155°С, нанесением фоторезиста в стационарных режимах. В таблице представлены сравнительные характеристики фоторезистов ФП-383 и ФП-383Н для пленки толщиной 1,1±0,1 мкм.

Уменьшение микронеровности поверхности пленки фоторезиста ФП-383Н достигнуто за счет введения в композицию фоторезиста нормально-бутилового спирта — среднелетучего растворителя с температурой кипения около 115°C, которая меньше температуры термодеструкции светочувствительного продукта, а также бутилированного стиромаля. При высоком коэффициенте контрастности проявления микронеровность пленки практически не влияет на воспроизведение размера элемента. Увеличение разрешающей способности достигнуто за счет увеличения коэффициента пропускания УФ излучения и обеспечения высокого контраста проявления пленки фоторезиста при уменьшении содержания светочувствительного продукта, а также уменьшения структурирования пленки фоторезиста при сушке за счет введения бутилированного стиромаля. При высоком контрасте проявления появляется возможность обеспечить пороговую дозу облучения фоторезиста в окнах субмикронных размеров без отклонений линейных размеров элементов при проявлении. Устойчивость линейного размера элемента к переэкспонированию и перепроявлению является основным условием одновременного получения элементов с микронными и субмикронными размерами, является основным критерием правильности выбора материала и настройки технологической системы обработки резиста при любом из методов фото-, электроно-, рентгенолитографии. При высоком коэффициенте контрастности проявления наблюдается самоостанавливающееся проявление: отсутствие прак-

тического изменения размера элемента в зависимости от времени проявления. Величина контраста проявления однозначно определяет границу и профиль проявленного элемента по определенному уровню облученности фоторезиста. Термоустойчивость маски фоторезиста и устойчивость к плазмохимическому травлению обеспечена за счет введения бутилированного стиромаля. Особо следует отметить у фоторезиста ФП-383Н такое важное практическое свойство, как низкий уровень дефектообразования за счет пластичности полностью высушенной пленки, обеспечиваемой путем введения бутилированного стиромаля в качестве пластификатора. Исследования показали, что количество дефектных модулей для контакной печати снижается в два-три раза, для проекционной печати — в 1,2—1,5 раза за счет уменьшения растрескивания пленки фоторезиста при контакте фотошаблона с подложкой, а также уменьшения образования крошки фоторезиста по периметру пластины при контакте с кассетами, направляющими пневмодорожек установок совмещения и задувания этой крошки на рабочую поверхность пластины. У фоторезиста ФП-383Н практически исключено «сухое» налипание на фотошаблон. Низкий уровень дефектообразования фоторезиста ФП-383Н расширяет возможность применения контактной печати для СБИС с площадью кристалла до 40 мм². Фоторезист ФП-383Н имеет хорошую адгезию ко всем технологическим материалам без применения усилителя адгезии, что позволяет исключить обработку в плазме кислорода, в некоторых случаях — операцию дубления для химического травления.

Фоторезист ФП-383Н используется в технологии высокоточной фотолитографии для всех типов технологий изготовления БИС с применением проекционного, контактного и контактного с микрозазором методов печати, химического и плазмохимического методов травления с размером элементов до 0,8 мкм.

Таким образом, комплексная оптимизация состава фоторезиста и проявителя, технологии обработки фоторезиста позволила разработать фоторезист, отвечающий требованиям универсальности применения, обеспечила минимизацию технологических операций, значительное снижение уровня дефектообразования, расширила возможность применения оптической литографии в технологии изготовления СБИС.

Статья поступила 23 мая 1989 г.

УДК 621.3.049.77.002

СПЕЦИАЛИЗИРОВАННЫЕ ФОТОРЕЗИСТЫ ДЛЯ СУХОЙ ФОТОЛИТОГРАФИИ

Ю.С.Боков, канд.техн.наук В.М.Фролов

Результаты анализа свойств фоторезистов для сухой субмикронной литографии позволили определить основные требования к фоторезистам: чувствительность — не ниже 10 см²/Дж, линейный коэффициент поглощения на длине волны 436 нм — не менее 1 мкм⁻¹, теплостойкость — не менее 200°С, плазмостойкость — не хуже 2,5.

Применение в технологии фотолитографии на основе силилирования экспонированных областей фоторезиста и ионно-плазменного проявления изображения серийных фоторезистов на основе замещенных о-нафтохинондиазидов (о-НХДА) и новолачных смол обеспечивает возможность получения фоторезистивных масок с минимальными размерами элементов 0,5—0,6 мкм при толщине маски 1—2 мкм, но при соблюдении следующих условий:

 подложка не должна отражать актиничное излучение;

 температура подложки в процессах силилирования и плазменного проявления поддерживается не выше 100—110°С.

Указанные ограничения обусловливают необходимость применения вспомогательного антиотражающего покрытия под пленкой фоторезиста и величины плотности ВЧ мощности в процессе ионно-плазменного проявления фоторезиста — до 0,3 Вт/см². Такое усложнение технологии формирования маски снижает производительность процесса (так, на операции плазменного проявления производительность не превышает 4—5 пластин в час по сравнению с 30—40 пластинами в час для жидкостного проявления в традиционной технологии фотолитографии).

Недостатки могут быть устранены при использовании специализированного фоторезиста, обладающего сильным поглощением актиничного излучения (365— 436 нм) и теплостойкостью ~200°С.

Разработанный на фирме UCB Electronics (Лувен, Бельгия) фоторезист «Plasmask» обеспечивает разрешение 0,4—0,6 мкм на сильноотражающей и рельефной подложке при толщине фоторезистивной пленки более 2 мкм, производительность операции проявления составляет 30 пластин в час, теплостойкость проявленного рельефа — 300°С [1]. Однако недостаточная стабильность свойств фоторезиста «Plasmask» при хранении препятствует его промышленному применению [2].

Таким образом, проблема создания специализированного фоторезиста для фотолитографии на основе локального силилирования и плазменного проявления изображения является актуальной и важной.

Рассмотрим основные требования, которым должен отвечать фоторезист, предназначенный для применения в технологии локального силилирования.

Химический состав пленкообразователя. Состав определяется стойкостью кремнийорганического полимера к воздействию кислородной плазмы в условиях анизотропного реактивного ионного травления, которая обеспечивается при концентрации кремния в полимере (или в силилированном слое фоторезиста), равной 10 масс.% [3]. Исходя из этого критерия, можно рассчитать необходимое содержание силилируемых гидроксильных групп в макромолекуле полимера. Содержание гидроксильных групп в мономерном звене макромолекулы с молекулярной массой 160: М.М. (OH)/160= =17/160 \simeq 10%.

Рассчитанному значению содержания гидроксильных групп в мономерном звене пленкообразователя удовлетворяют, например, фенол-крезол- и ксиленолформальдегидные смолы, а также сополимеры метакриловой кислоты (МАК) с ее производными, содержащие 50% МАК.

Химический состав светочувствительного компонента (СЧК). Требования к химическому составу СЧК обусловлены процессами термолиза и фотолиза о-НХДА в полимерных матрицах [4—6]. Исследования кинетики термолиза о-НХДА в матрице из новолачной смолы дают следующие результаты: период полураспада о-НХДА при 140°С равен 3 мин, а при 160°С — 35 с. Так как процесс термолиза о-НХДА в матрице полимера-пленкообразователя должен приводить к образованию поперечных связей между макромолекулами полимера, т.е. к его структурированию, то необходимо применение либо многофункциональных о-НХДА, содержащих не менее двух диазохиноновых групп, либо эфиров о-НХДА с макромолекулами пленкообразователя. Применение многофункциональных о-НХДА предпочтительнее, так как обеспечивает повышенный контраст фоторезиста [7].

Температура стеклования полимера-пленкообразователя. Физическое состояние полимера, которое может быть стеклообразным, высокоэластичным и вязкотекучим, определяется температурой, структурой полимера, наличием растворителя в полимерной матрице и полярных групп в макромолекулах.

Особый интерес представляет высокоэластичное состояние полимера, которое можно считать жидким по отношению к сегментам макромолекул, но твердым по отношению к макромолекулам в целом, так как скорости деформации макромолекул существенно превосходят скорости их движения. Коэффициенты газопроницаемости, диффузии и растворимости для полимера в высокоэластичном состоянии на несколько порядков выше, чем в застеклованном состоянии. Поэтому, если в результате радиационно- или термохимических превращений обеспечиваются различные физические состояния экспонированных и неэкспонированных областей пленки фоторезиста, то будут силилироваться только те области пленки, которые находятся в высокоэластичном состоянии. В процессе постэкспозиционной термообработки пленок фоторезистов на основе о-НХДА и НС происходит структурирование полимера в неэкспонированных областях пленки продуктами термолиза о-НХДА, в то время как в экспонированных областях пленки полимер сохраняет линейную структуру. Чтобы не было деформаций скрытого изображения в процессе термообработки, температура стеклования пленкообразователя должна быть выше температуры интенсивного термолиза о-НХДА, т.е. выше 130°С.

Если диффундирующее вещество гексаметилдисилазан (ГМДС) само является растворителем для полимера, то сорбция его паров приводит к уменьшению межмолекулярного взаимодействия макромолекул и к увеличению набора конформаций макромолекул, что означает сильное возрастание проницаемости полимера. Поэтому при изменении в результате экспонирования растворимости полимера или светочувствительного компонента в ГМДС локальность силилирования может быть обеспечена пластифицирующим действием силилирующего реагента.

Содержание сухого остатка в растворе фоторезиста и вязкость раствора. Особенности метода локального силилирования поверхностного слоя фоторезиста обусловливают, во-первых, необходимость планарной поверхности подложки, и, во-вторых, минимальную усадку пленки фоторезиста в процессе термообработок [8]. С другой стороны, вязкость раствора фоторезиста должна обеспечить возможность применения стандартного оборудования для нанесения и фильтрации фоторезистов, причем толщина пленки фоторезиста в интервале скоростей центрифугирования 3000—6000 об/мин должна находиться в пределах 1,5—2,5 мкм.

Таким образом, композиция специализированного фоторезиста должна содержать как можно большее количество сухого остатка при минимально возможной вязкости раствора. Для обеспечения формирования пленки фоторезиста указанной толщины на стандартном оборудовании достаточно, чтобы содержание сухого остатка в ней составляло 30%, а вязкость — 40—60 сПз.

Характеристики поглощения излучения. Поглощение актиничного излучения диазохиноновыми группами в серийных композициях фоторезистов явно недостаточно для исключения искажений, вызванных отражением этого излучения от поверхности подложки. Так, коэффиц. энты поглощения излучения с длиной волны 436 нм для фоторезиста Az-1350 в начальный момент экспонирования и после дозы 70 мДж/см² равны 0,54 и 0,06 мкм⁻¹ соответственно [9]. Поэтому в композицию фоторезиста должен быть включен краситель, интенсивно поглощающий в области 365-436 нм, но прозрачный для излучения в области длин волн, превышающих 500 нм, которое используется для совмещения. Такой краситель, в отличие от о-НХДА, будет ухудшать селективность силилирования экспонированных и неэкспонированных областей пленки (его присутствие будет одинаково повышать или понижать проницаемость для силилирующего реагента как экспонированных, так и неэкспонированных областей пленки), поэтому количество красителя должно быть минимально необходимым для ослабления интенсивности отраженного актиничного излучения вблизи поверхности пленки фоторезиста примерно в 10 раз по сравнению с интенсивностью падающего излучения. Расчеты коэффициентов поглощения актиничного излучения (365-436 нм) и излучения, используемого для совмещения (540-580 нм), дают значения коэффициентов линейного поглощения µ436 и µ580, равные 1 и 0,5 мкм coответственно.

Чувствительность и контраст. Чувствительность является одной из важнейших характеристик фоторезиста, так как она определяет производительность не только операции экспонирования, но и всего цикла фотолитографии. Для специализированного фоторезиста на основе о-НХДА, предназначенного к применению в технологии локального силилирования и плазменного проявления изображения, непригодно стандартное определение чувствительности негативных фоторезистов как величины, обратной минимальной дозе облучения, необходимой для гелеобразования при жидкостном пооявлении. Применительно к фоторезистам, проявляемым в плазме, предлагается определение чувствительности как величины, обратной минимальной дозе излучения, при которой характеристическая функция d/dmax=f(lgH) становится постоянной (при одних и тех же условиях термообработки, силилирования и проявления). Данное определение чувствительности по смыслу совпадает с так называемой литографической чувствительностью, характеризующейся дозой облучения, при которой достигаются минимальные отклонения экспонированных и неэкспонированных линий одинаковой ширины от размеров, заданных фотошаблоном (для традиционных негативных фоторезистов $S_{AHT} = 1/D_{0.5}$). Чувствительность специализированного фоторезиста для технологии силилирования и плазменного проявления скрытого силилированного изображения не должна быть ниже чувствительности позитивных фоторезистов в традиционной фотолитографии.

Несомненно, возможность экспонирования только относительно тонкого (до 0,5 мкм) поверхностного слоя пленки фоторезиста в технологии локального силилирования позволит разработать существенно более чувствительные фоторезисты, чем в конкурирующих технологиях субмикронной фотолитографии. За базовый уровень в настоящее время можно принять литографическую чувствительность серийных позитивных фоторезистов, находящуюся на уровне 10 см²/Дж.

Контраст специализированного фоторезиста, определяемый по наклонному участку характеристической функции известным соотношением

$$\gamma = \frac{1}{\lg D_0 - \lg D_i} = (\lg \frac{D_0}{D_i})^{-1},$$

оценивает возможности фоторезиста по разрешению и точности воспроизведения заданных размеров в проявленном рельефе. Для воспроизводимого получения субмикронного разрешения в проявленном рельефе в пленке толщиной порядка 2 мкм с точностью не хуже $\pm 10\%$ от заданного рельефа необходимо значение контраста не менее 3 [10]. Отличительная особенность ме-

тода локального силилирования — возможность управления контрастом за счет изменения режимов термообработки фоторезиста, силилирования и проявления независимо от режимов экспонирования фоторезиста и его химического состава.

Включение в процесс проявления силилированного изображения стадии предварительного стравливания силилированного слоя в неэкспонированных областях пленки дает возможность повысить контраст с 2,4 до 5,6 [11].

Следует отметить, что контраст силилируемого фоторезиста, в отличие от традиционных негативных фоторезистов, не будет зависеть от молекулярной массы и молекулярно-массового распределения пленкообразователя.

Теплостойкость. Теплостойкость специализированного фоторезиста для метода локального силилирования, кроме традиционного требования к теплостойкости проявленного рельефа, включает и требование к теплостойкости скрытого изображения после экспонирования, определяемой в данном случае как температура, при которой происходит деформация скрытого изображения в процессе постэкспозиционной термообработки и силилирования. Для фоторезистивных композиций на основе о-НХДА начальная теплостойкость скрытого изображения должна превышать температуру интенсивного термолиза о-НХДА, т.е. 130°С, а конечная теплостойкость скрытого силилированного изображения должна быть не менее 200°С, так как в процессе ионноплазменного проявления температура подложки поднимается до 200°С. В процессе проявления в указанных условиях происходит доотверждение фоторезистивного рельефа, в результате чего его теплостойкость возрастает и определяется температурой термоокислительной деструкции полимера-пленкообразователя, которая для большинства полимеров, потенциально пригодных для применения в композициях силилируемых фоторезистов, находится в области 250—300°С.

Плаэмостойкость. Плазмостойкость фоторезистов в плазме на основе фтор- и хлорсодержащих газов в значительной степени определяется химическим строением полимера-пленкообразователя и его структурой (линейной или сшитой). Известно, что плазмостойкость максимальна у сшитых полимеров, содержащих ароматические группы в основной цепи или в боковых звеньях, и возрастает с увеличением отношения углерод-кислород в мономерном звене [12]. Отсюда следует требование, предъявляемое к химическому составу полимера-пленкообразователя специализированного фоторезиста: наличие ароматических групп и способность к структурированию в ходе операций процесса формирования маски (при этом, конечно, должны соблюдаться указанные выше требования к химическому составу и теплостойкости полимера). Указанное значение селективности травления алюминия по отношению к фоторезисту в хлорсодержащей плазме (~2,5) достаточно для надежного маскирования и совпадает с аналогичным требованием к плазмостойкости фоторезиста в традиционной схеме фотолитографии.

Стабильность свойств при хранении. Для большинства фоторезистов на основе о-НХДА и новолачных смол, применяемых в традиционной схеме фотолитографии, срок хранения не превышает одного года вследствие разложения о-НХДА и окисления пленкообразующего компонента (первое из превращений приводит к образованию проколов в маске, второе — к образованию непроявленных включений). Можно предположить, что силилируемые и проявляемые в плазме фоторезисты должны быть менее чувствительны к появлению карбоксильных групп (инденкарбоновых кислот, в которые трансформируются продукты термолиза о-НХДА) в их составе, а также к увеличению молекулярно-массового распределения пленкообразователя в результате его окисления.

Основные требования к специализированному фоторезисту:

 содержание гидроксильных групп в пленкообразующем компоненте — не менее 10 масс. %;

температура стеклования пленкообразующего компонента — не менее 130°С;

- количество диазохиноновых групп в молекуле светочувствительного компонента — не менее 2;

- содержание сухого остатка в растворе композиции — не менее 30 масс. %;

— вязкость раствора фоторезиста — 40—60 сПз; — линейный коэффициент поглощения в интервале

длин волн 365—436 нм после экспонирования с дозой 100 мДж/см² — не менее 1 мкм⁻¹;

– линейный коэффициент поглощения излучения с длиной волны, превышающей 500 нм — не более 0,5 мкм⁻¹;

— чувствительность — не ниже 10 см²/Дж;

— контраст — не менее 3;

— теплостойкость — не менее 200°С;

— плазмостойкость — не хуже 2,5;

 стабильность свойств при хранении в нормальных условиях — не менее одного года.

ЛИТЕРАТУРА

1. Roland B., Coopmans F. Plasmask. A novel plasma developed resist based on selective silylation.— In: Extend. Abstr. 18-th Int. Conf. Solid St. Dev. Mater.— Tokyo, Aug. 20—22, 1986, p. 33.

Aug. 20-22, 1900, p. 53.
2. M c G r e a r y M. Photoresist schemes for submicron optical lithography.— In: Techn. Proc. Conf.— Advanced processing challenges.— SEMICON/Europa, March 10-12, 1987, Zurich, Switz, print. SEMI Inc., p. 1.
3. W a t a n a b e F., O h n i s h i Y. Oxygen RIE of organosilicon polymers.— J. Vac. Sci. Technol., 1986, N 1, vol. B(4),

ρ. 422.

4. Pacansky J., Lyerla J. Photochemical decomposition mechanisms for Az-type photoresists.— IBM J. Res. Develop., 1979, vol. 23, N 1, p. 42.

5. Парамонов А.И., Прохоцкий Ю.М., Эр-их Р.Д.— Фотолизи термолизо-нафтохинондиазидов.— Журн. науч. прикл. фотогр. и кинематогр., 1972, т. 19, вып. 4, c. 122.

6. Скачков Б.К., Соломоненко Г.В., Кольц о в Ю.И. О термическом разложении светочувствительных о-нафтохинондиазидов. Журн. науч. прикл. фотогр. и кинематогр., 1980, т. 25, вып. 2, с. 102.

7. Trefonas III P., Woodbrey J.C., Szmand a C.R. Polyphotolysis process to enhance positive photore-sist results.— Solid St. Technol., 1987, N 7, p. 95.

8. Обзоры по электронной технике: Технология субмикронной фотолитографии: современное состояние, перспективы развития и применения/Ю.С.Боков, А.Б.Невский, В.М.Фролов. М., 1988. Вып. 6. Сер. 3. Микроэлектроника. 36 с.

9. Светочувствительные полимерные материалы/Под ред. А.В.Ельцова.— Л.: Химия, 1985.— 296 с.

10. Coopmans F., Roland B., Lombaerts R.— Effect of silvlation parameters on the lithographic performance of the DESIRE system.- Microelectron. Eng., 1986, vol. 5, 1-4, p. 291.

11. R o I a n d B., C o o ρ m a n s F.— DESIRE for versa-tile dry develop lithography.— In: Techn. Proc. Conf.— Advan-ced processing challenges — SEMICON/Europa, March 10—12, 1987, Zürich, Switz., print. SEMI Inc., p. 16.

12. Плазменная технология в производстве СБИС/Под д. Н.Айнспрука и Д.Брауна/Пер. с англ.— М.: Мир, 1987.— 103 c.

Статья поступила 9 октября 1989 г

ЭФФЕКТИВНОСТЬ ГЕТТЕРИРОВАНИЯ С ПОМОЩЬЮ ЛАЗЕРНОЙ ОБРАБОТКИ И ИОННОЙ ИМПЛАНТАЦИИ

д-р физ-мат. наук Ю.А.Быковский, канд.физ.-мат. наук Ю.К.Альтудов, А.Х.Медалиев

Удаление точечных дефектов и нежелательных примесей из активных областей кремниевых пластин (геттерирование) представляет большую проблему в технологии ИС. Различают три типа геттерирования: физическое, химическое (использование ионной пары) и физико-химическое (управление процессом растворимости).

Физическое геттерирование может быть внутренним (нарушения вводятся в объем пластины) или внешним (нарушения создаются в поверхностном слое). Внутреннее геттерирование основано на выпадении преципитатов кислорода, присутствующего в кремнии, и последующем их росте. При этом образуются междоузельные атомы и петли дислокаций, обеспечивающие геттерирование точечных дефектов [1]. Большие сложности вызывает обеспечение заданного распределения кислорода, точный расчет термоциклов, их совмещение с технологией изготовления приборов.

Из многочисленных методов внешнего геттерирования наиболее перспективными считаются лазерное геттерирование и ионная имплантация. Они обеспечивают наиболее однородный и контролируемый нарушенный слой.

Использовался лазер на АИГ (Nd), работающий в режиме модулированной добротности [2]. Длина волны 1,06 мкм, длительность импульса 15—20 нс, частота повторения импульсов до 30 кГц. Сканированием образца по одной из координат с шаговым перемещением по другой обеспечивается расположение нарушений в виде параллельных полос, каждая из которых представляет собой последовательный ряд перекрывающихся лунок. Луч фокусировался до 80 мкм, расстояние между полосами составляло 200 мкм, перекрытие лунок – около 60%.

Исследования нарушенного слоя проводились на оптическом и растровом электронном микроскопах. Установлено, что при глубине нарушений до 6 мкм образуются микротрещины и дислокационные петли, связанные с неоднородным нагревом матрицы после термообработки. Остаточных дефектов такого типа не наблюдается. Эффект геттерирования незначителен. При увеличении глубины нарушений до 20-25 мкм происходит резкий рост плотности дислокаций до 4.10² мм-² Кроме того, в центре лунки образуется мелкозернистая поликристаллическая структура, которая может служить эффективным центром закрепления дислокационных петель, чем, по-видимому, обусловлена их высокая термостойкость. Дальнейшее увеличение мощности излучения приводит к образованию дислокаций скольжения по всей пластине.

Другой способ — это геттерирование ионной имплантации. Традиционными элементами, использующимися для геттерирования, являются инертные газы, нейтральные элементы, легирующие примеси, они дают однородный нарушенный слой, позволяют добиваться эффективного геттерирования [3, 4]. Однако этот способ не обладает высокой термостойкостью, что приводит к необходимости периодического восстановления геттера. Избежать этих трудностей позволяет имплантация ионов тугоплавких элементов, в частности вольфрама. Имплантация проводилась на установке "Легион" с лазерно-плазменным источником ионов (энергия 20 кэВ, доза 1·10¹⁴—5·10¹⁶ см⁻²). Обработке ионами подвергалась обратная сторона пластины.

Исследования нарушенного слоя, проведенные с помощью метода рентгеновских стоячих волн и растровой электронной микроскопии в сочетании с селективным травлением, показали, что образуется аморфный слой кремния толщиной 40–47 нм, генерирующий сетку дислокаций несоответствия высокой плотности ($\sim 10^7 - 10^8$ см⁻²).

Ионно-имплантированный слой отличается высокой термостойкостью: обработка при температуре до 1273К не приводит к уменьшению плотности дислокаций, и только после часовой термообработки при температуре 1373К толщина аморфного слоя уменьшается до 5–7 нм.

Эффективность геттерирования оценивалась по измерению плотности ямок травления, соответствующей микродефектам, времени жизни неосновных носителей и содержанию быстродиффундирующих примесей. Для этого на часть пластин напылялась пленка меди, служившая источником диффузии. Затем она стравливалась. Измерения проводились на лазерном анализаторе ЭМАЛ-2. Результаты измерений приведены ниже.

Характеристики	Исходная пластина	После лазерной обра- ботки	После ионной имплантации
Время жизни, мкс	9,0 6,1 1,0	9,2 29,7 16,2	8,1 32,8 9,7
Плотность дефек- тов, см ⁻²	$3 \cdot 10^5$ $5 \cdot 10^5$ $3, 4 \cdot 10^7$	3 · 10 ⁵ 2,2 · 10 ³ 3,1 · 10 ⁶	3 · 10 ⁵ 3,1 · 10 ³ 6,2 · 10 ⁶
Концентрация меди, см ⁻²	10 ¹⁷ 10 ¹⁷ 10 ¹⁷	10 ¹⁷ 10 ¹⁴ 2 • 10 ¹⁵	10 ¹⁷ (без отжига) 10 ¹⁴ (отжиг 1173 К) 6 · 10 ¹⁶ (отжиг 1223 К)

Можно сделать вывод, что эффективность рассмотренных методов геттерирования почти одинакова, но лазерный метод более термостоек и обладает бо́льшей емкостью. К достоинствам геттерирования ионной имплантацией можно отнести более высокую воспроизводимость результатов.

литература

1. Eggermont G.E.L., Falser P.J., Hahn S.K. Laser indused damage gettering.— Solid state technology, 1983, N 11, ρ. 171—178.

2. Патент № 4131487 (США).

3. Simultaneous gettering of Au in silicon by phosphorus and dislocations/W.F.Tsong, T.Koji, Z.W.Mayer, T.E.Seidel.— Appl. Phys. Lett., 1978, vol. 33, N 5, p. 442.

4. Ion-implanted-damage gettering effect in silicon photodiode array camera target/C.M.Hsich, H.D.Seidel, K.A.Pickar et al.— Appl. Phys. Lett., 1973, vol. 22, N 5, p. 238.

ГЕТТЕРИРОВАНИЕ ПРИ ИМПЛАНТАЦИИ ИОНАМИ ВОЛЬФРАМА

канд.физ.-мат.наук Ю.К.Альтудов, д-р физ-мат.наук Ю.А.Быковский, А.Х.Медалиев, А.А.Бжеумихов

Из многочисленных методов внешнего геттерирования наиболее распространенным является метод ионной имплантации [1-3]. Эффективность геттерирования зависит от типа внедряемых ионов, энергии и дозы имплантации. В основном используются элементы легирующих примесей или инертных газов, позволяющие получить высокие результаты. Типичные значения энергии составляют 300 – 500 кэВ, дозы – 10¹⁵ – 10¹⁶ см⁻².

Очевидные достоинства имплантированного слоя, такие как однородность, воспроизводимость и контролируемость физико-химических параметров, нейтрализуются одним большим недостатком — его невысокой термостойкостью. После нескольких термических обработок при температурах, обычно применяе мых в технологии ИС, структура исходного материала почти полностью восстанавливается, дефекты и примеси освобождаются и это приводит к резкому снижению эффективности геттерирования.

При имплантации ионов тугоплавких элементов, например вольфрама, этот недостаток становится несущественным, т.е. имплантированный слой сохраняет свойства геттера и после высокотемпературных обработок.

Имплантация проводилась на установке "Легион" с лазерно-плазменным источником ионов (энергия 20 кэВ, доза 1.10¹⁴ –5.10¹⁶ см⁻²). Использовались пластины, монокристаллический кремний КДБ 10 (111) и КЭФ 4,5 (111). Облучению подвергалась обратная сторона пластины кремния перед окислением, глубина внедрения ионов составляла примерно половину толщины кремниевой пластины.

Имплантированный (нарушенный) слой исследовался методом стоячих рентгеновских волн и растровой электронной микроскопии в сочетании с селективным травлением.

Установлено, что такая обработка приводит к образованию полностью аморфизированного слоя толщиной 47±5 нм, при этом зависимость степени аморфизации от дозы имплантации в указанном интервале доз не наблюдается. Многочасовой отжиг как в инертных, так и в окислительных средах, в интервале температур 973 — 1273 К не приводит к заметным изменениям в структуре нарушенного слоя, но после термообработки при 1373 К его толщина уменьшается до ~ 7 нм. Характерно, что даже в частично отожженном нарушенном слое упорядочения атомов вольфрама не происходит, что, видимо, связано с большой разницей в атомных радиусах вольфрама и кремния. Показательно, что теоретический пробег ионов вольфрама в указанных режимах имплантации составляет 7–9 нм.

Доминирующим типом дефектов в нарушенном слое являются дислокации несоответствия, максимальная плотность которых достигает 10^8 см⁻², и не изменяется при термообработках до 1273 К. Можно предположить, что дислокации несоответствия являются дислокациями типа B = 1/2 < 100 >, высокая плотность которых считается критерием эффективного геттери-

рования. Таким образом, имплантация ионов вольфрама приводит к образованию термостойкого аморфного слоя, генерирующего сетку дислокаций высокой плотности.

Эффективность геттерирования оценивалась измерением времени жизни неосновных носителей вольт-фарадным методом и плотности окислительных дефектов упаковки. Наилучшие результаты были получены при дозе имплантации 10¹⁵ см⁻², зависимость эффективности геттерирования от дозы имплантации не наблюдается. При дозе имплантации меньшей 10¹⁴ см⁻² геттерирования не происходит.

В таблице указано минимальное время термообработки, которое приводит к повышению времени жизни неосновных носителей. Более длительные термообработки не проводились, чтобы избежать влияния внутреннего геттерирования.

Доза имп- лантации	Время жи	Отношение		
	Исходные образцы	После отжига при 1173 К		Т <u>после отжига</u> Тв исход. образце
		180 мин	600 мин	
2·10 ¹⁴	12,4	9,2	32,1	3,37
1 · 10 ¹⁵	10,7	11,0	42,3	3,84
5 · 10 ¹⁶	3,4	3,3	11,9	3,5

При оптимальных режимах геттерирования наблюдалось снижение плотности окислительных дефектов упаковки с 3·10⁵ до 5·10³ см⁻². Существенное снижение плотности дефектов упаковки и увеличение времени жизни носителей (правда, менее выраженное) связано с влиянием быстродиффундирующих примесей, дающих глубокие уровни (информация о концентрации быстродиффундирующих примесей в исходных образцах отсутствует).

Таким образом, показано, что имплантация ионов вольфрама приводит к образованию термостабильного нарушенного слоя, позволяющего проводить эффективное геттерирование в кремниевых пластинах.

литература

1. Simultaneous gettering of Au in silicon by phosphorus and dislocations/W.F.Tsong, T.Koji, Z.W.Mayer, T.E.Seide.— Appl. Phys. Lett., 1978, vol. 33, N 5, p. 442.

2. Electric-field-induced transient spin-flip Raman laser pulses in InSb⁺/A.Mooradian, S.R.J.Brueck, E.J.Johnson, J.A.Rossi.— Appl. Phys. Lett., 1972, vol. 21, N 10, p. 482.

3. Ion-implanted-damage gettering effect in silicon photodiode array camera target/C.M.Hsich, H.D.Seidel, K.A.Pickar et al.— Appl. Phys. Lett., 1973, vol. 22, N 5, p. 238.

Статья поступила 24 ноября 1989 г.

ИЗГОТОВЛЕНИЕ МНОГОСЛОЙНЫХ КЕРАМИЧЕСКИХ КОММУТАЦИОННЫХ ПЛАТ

Н.Н.Остроухов

Показано влияние разноусадочности керамики на характеристики МКП, получено аналитическое выражение для выхода годных изделий с учетом этого фактора.

Многослойные керамические коммутационные структуры (МККС), т.е. многослойные керамические платы (МКП) и металлокерамические корпуса (МКК), являются перспективным средством повышения плотности монтажа компонентов в производстве микроэлектронной техники [1], обусловливают возможность использования многовыводных кристаллов [2], а также создают предпосылки внедрения прогрессивных способов сборки [3]. В настоящее время большинство МККС изготавливается по так называемой технологии МКП-2 [1]. По этой технологии из керамического шликера формуют монослои, сушат их, формируют переходные отверстия, методами толстопленочной технологии создают про-

водящий рисунок, затем полученные заготовки («карты») складывают пакетом и спекают. Если на одной «карте» формируют несколько изделий, что характерно, например, при производстве МКК, собранный пакет перед спеканием разрезают.

Основные параметры, характеризующие совершенство технологии МКП-2: разрешающая способность (минимальный воспроизводимый шаг проводящего рисунка) и процент выхода годных изделий — зависят от разноусадочности применяемой керамики, т.е. от разности величин изменения размеров отдельных монослоев многослойной структуры, происходящего во время спекания. Разноусадочность наиболее широко используемой алюмооксидной керамики достигает 1—2% номинального размера «карты» [2, 4].

Очевидно, что основной причиной брака в производстве МККС, обусловленного разноусадочностью керамики, является плохой контакт межслойной металлизации с элементами проводящего рисунка соседних слоев (рис. 1, обозначения: s — шаг проводящего рисунка, β — неровность края проводящей дорожки).

В идеальном случае оси переходного отверстия и проводящей дорожки совпадают, а площадь контакта (на рис. 1 — заштрихована) максимальна. На практике площадь контакта меньше идеальной по двум причинам — рассовмещения осей дорож-

Рис. 1. Схема контакта проводящей дорожки с металлизацией переходного отверстия

ки и отверстия и неровности края дорожки. В свою очередь, рассовмещение осей определяется погрешностью совмещения слоев при сборке пакета и разноусадочности слоев, а неровность края дорожки точностью формирования проводящего рисунка, в технологии МКП-2 — точностью методов нанесения толстых пленок.

Аппроксимируя площадь заштрихованного сегмента площадью треугольника той же высоты, но имеющего основание, равное диаметру переходного отверстия, получаем:

$$F = \frac{s}{4} \left(\frac{s}{2} - \sigma - \beta - \gamma \right),$$

где γ — рассовмещение слоев при сборке пакета, $\sigma = al$ — разноусадочность (α — относительная величина, $l \leq L$ — размер изделия, определяющий разноусадочность, L — максимальный размер изделия). Принято, что оптимальная ширина проводящей дорожки и диаметр переходного отверстия равны половине шага. Годность контакта зависит от предъявляемых требований. Если условиться, что годный контакт имеет сопротивление, превышающее сопротивление проводящей дорожки не более, чем в k раз, то из сравнения площадей кон-

такта и дорожки (
$$F \partial = \frac{s}{2} \xi$$
, где ξ — толщина до-

рожки) получаем неравенства, определяющие годный и негодный контакт соответственно:

$$\frac{\xi}{k} < \frac{1}{2} \left(\frac{s}{2} - \alpha l - \beta - \gamma \right),$$
$$\frac{\xi}{k} \ge \frac{1}{2} \left(\frac{s}{2} - \alpha l - \beta - \gamma \right).$$

При $k \to \infty$ сопротивление контакта много больше сопротивления дорожки. Если металлизация отверстия и дорожка не соприкасаются, то контакта нет вообще. Формально последний результат достигается, когда выражение в скобках меньше либо равно нулю, что соответствует $\xi \leq 0$; т.е. когда

 $\frac{\beta}{2} \leq \alpha l + \beta + \gamma.$

Величины α , β и γ носят вероятностный характер, т.е. зависят от ряда случайных факторов каждая и изменяются в диапазоне от нуля до некоторых максимальных значений α_{max} , β_{max} и γ_{max} .

Усадка керамики определяется в первую очередь видом используемого порошка, а также может зависеть от технологии приготовления шликера и последующих операций формования монослоев. Факторы, влияющие на а на различных стадиях технологического процесса, не зависят друг от друга. Абсолютное значение разноусадочности зависит еще и от размера спекаемого слоя.

Точность совмещения слоев определяется совершенством технологической оснастки. Если рассовмещение обусловлено лишь параллельным сдвигом слоев друг относительно друга, то у постоянна для всех точек каждой пары слоев. Если, кроме сдвига, возможен поворот, то у переменна по площади. Однако при любой комбинации сдвига и поворота максимальное рассовмещение достигается на одном из краев «карты».

Неровность края дорожки тоже определяется технологическим оборудованием. Однако, в отличие от рассовмещения, абсолютная величина неровности реализуется с равной вероятностью по всей площади, оставаясь в определенном интервале $0 \le \beta \le \beta_{max}$. Вследствие относительной малости диаметра пере-

ходного отверстия влияние длины суженного участка можно не учитывать. В перспективных МККС число переходных отверстий весьма велико (на одном слое $\geq 10^2$). Соответственно велико их число и вблизи краев. Поэтому даже при относительно малой вероятности появления сужения оно совпадает с одним из отверстий.

На основе изложенных рассуждений из формулы для площади контакта можно получить выражение для доли изделий, в которых площадь контакта всех отверстий всех слоев не менее заданной:

$$\Delta(m) = \left[\frac{P}{Lamax} \frac{S}{2} - \beta - \gamma - \frac{2}{b} \frac{\frac{2P}{q}(m-1)}{\xi}\right]$$

где P=2 или 1 соответственно для случаев, когда усадка происходит к центру или к краю «карты», m — число слоев, q=2 или 1 для структур с параллельными дорожками на каждом слое или с их произвольной ориентацией.

Аналогично получаем выражение для вероятности образования какого-либо контакта всех отверстий структуры из *m* слоев:

$$\Omega(m) = \left[\frac{P}{L_{amax}}\left(\frac{S}{2} - \beta - \gamma\right)\right]^{\frac{2P}{q}} (m-1)$$

На рис. 2 представлены расчетные зависимости выхода годных от шага проводящего рисунка при производстве 3-слойных МККС с максимальным линейным размером 25 мм. Расчеты выполнены для двух вариантов значений β и γ . Величины k и qпри расчетах Δ принимались равными 1.

При шаге рисунка 1 мм и меньше, выход годных быстро снижается даже в случае минимальной разноусадочности, равной 0,01. Полученные значения выхода годных близки к известным из практики, они правильно отражают общую тенденцию, в частности, сложность получения МКК с шагом выводов $\leq 0,5$ мм. Видно также, что при малых S увеличение k вплоть до ∞ , т.е. снижение требований к контакту увеличивает выход годных незначительно.

Применительно к МКК, имеющим вполне определенную конфигурацию проводящего рисунка, можно получить соотношение, определяющее максимально возможное число выводов при 100%-ном выходе годных, т.е. такое число выводов, которое еще не вызывает появление брака вследствие разноусадочности. Если МКК в плане имеет форму квадрата, то число выводов и длина стороны квад-

рата пропорциональны друг другу:
$$L = \frac{1}{4} Ns$$
, $s = -$

шаг выводов. Подставляя это значение L в (4), имеем

$$N_{max} = \frac{4}{\alpha_{max}} \left(\frac{1}{2} - \frac{\beta + \gamma + \frac{2}{k}\xi}{s}\right).$$

На рис. З представлены расчетные зависимости *Nmax(s)* при 100%-ном выходе годных.

Пропорциональность числа выводов и абсолютной величины разноусадочности делает безуспешными попытки изготовления МКК с большим числом выводов, например 200, даже если увеличить шаговое расстояние.

Аналогичным образом можно определить минимальное расстояние между элементами проводящего рисунка, т.е. разрешающую способность МККС, в зависимости от максимального размера при отсут-

Рис. 2. Зависимость выхода годных изделий от шага проводящего рисунка 3-слойной МККС. L=25 мм, $\xi=0,01$ мм, $\beta=\gamma=0,1s$ (сплошная линия), $\beta=\gamma=0,1$ мм при $s \ge 1$ мм (штриховая линия), $\alpha=0,02$ (1), 0,01 (2)

Рис. 3. Зависимость числа выводов МКК при 100%-ном выходе годных от шага выводов. 1) α =0,02; 2) α =0,01; ξ =0,01 мм, β = γ =0,1s (сплошная линия), β = γ =0,1 мм при $s \ge 1$ мм (штриховая линия)

Рис. 4. Зависимость минимального шага проводящего рисунка при 100%-ном выходе годных от максимального размера МККС (обозначения такие же, как на рис. 3)

ствии брака из-за разноусадочности:

$$s_{min}=2(\alpha L+\beta+\gamma+\frac{2}{k}\xi).$$

На рис. 4 представлены расчетные зависимости smin(L) для рассмотренных выше случаев.

Наиболее существенным фактором, неучет которого значительно огрубляет расчетную модель, является взаимодействие соприкасающихся слоев в процессе спекания. Конечность сил сцепления между слоями, особенно при спекании пакета под давлением, ограничивает возможность взаимного перемещения слоев, т.е. уменьшает разноусадочность. Однако такое ее уменьшение, не устраняющее природы, должно сопровождаться возникновением в слоях усадочных напряжений, которые, в свою очередь, сами могут стать причиной брака. Поэтому есть основания предполагать, что неучет взаимодействия слоев на оценках выхода годных сказывается незначительно.

ЛИТЕРАТУРА

1. Межкомпонентная коммутация в микроэлектронике (многослойные керамические коммутационные платы)/ С.Я.Шац, В.А.Шубарев, В.Г.Клыков.— Зарубежная радиоэлектроника, 1986, № 6, с. 20—32.

2. Корпуса для сборки интегральных микросхем/ А.А.Чернышов, Ю.Д.Чистяков.— Зарубежная электронная техника, 1988, № 9, с. 3—68.

3. Поверхностный монтаж компонентов — новое направление в конструировании и производстве микроэлектронной аппаратуры/ Л.А.Коледов, А.В.Заводян, В.А.Королькевич.— Зарубежная электронная техника, 1988, № 3, с. 3—107; № 4, с. 3—97.

4. Multilayer ceramics: the key to high density interconnections/ T.Dixon.— Electronics Packaging & Production, 1983, N 2, p. 76—78.

Статья поступила 16 июня 1989 г.

УДК 658.512.011.55:621.382.2.029.64

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ РЕЖИМОВ МНОГОКРАТНОЙ ИОННОЙ ИМПЛАНТАЦИИ ДЛЯ СОЗДАНИЯ *p*-ОБЛАСТИ ДВУХПРОЛЕТНОГО ЛПД

А.К.Шухостанов, А.В.Дружинин, А.Г.Шауцуков, С.Ч.Аталиков

Разработано программное обеспечение, дающее возможность пользователю в интерактивном режиме проводить многократную ионную имплантацию для создания *p*-области ЛПД с двойной областью дрейфа. Программное обеспечение реализовано на языке Форгран-IV для ЕС ЭВМ. Расчетное время одного из вариантов проведения процесса при глубине *p*-области менее 0,6 мкм не превышает 5 с. Инженерная версия программы реализована на языке Бейсик для малых ЭВМ типа ДВК-2М.

В последние годы интенсивное развитие получило автоматизированное проектирование ИЭТ. Большинство работ в этой области посвящено этапам схемотехнического и функционально-логического проектирования. Однако практика требует создания подобных систем физико-технологического характера [1].

Программа SUPER предназначена для расчета с выводом данных на экран дисплея или АЦПУ технологических ре жимов многократной ионной имплантации бора для создания *p*-области двухпролетного ЛПД. Основная трудность технологической реализации такого рода структур — создание плоскоступенчатого распределения примеси *p*-типа с высокой степенью однородности уровня легирования по глубине подложки [2].

В основу алгоритма программы SUPER положен принцип суперпозиции, используемый при моделировании многократной ионной имплантации [3, 4].

Исходные данные для работы алгоритма программы SUPER: тип легирующей примеси, тип подложки, глубина залегания *p*-области, степень перекрытия профилей торможения. Расчет моментов пространственного распределения ионно-имплантированной примеси производится по формулам:

$$R_{p} = \sum_{i=1}^{N} (A1)_{i} \cdot E^{i}; \quad \Delta R_{p} = \sum_{i=1}^{M} (A2)_{i} \cdot E^{i},$$

где R_p — продольный пробег (мкм); ΔR_p — страгтлинг продольного пробега (мкм); E — энергия внедрения (кэВ). При имплантации ионов бора в кремниевую подложку N=2, M=5. Численные значения массивов (A1), и (A2), используемые при расчете пространственного распределения имплантированных ионов бора в кремниевую подложку, приведены в табл. 1. Таблица І

Число элементов в массиве	Массив (АІ)	Массив (А2)
1	3,338E-3	1,781E-3
2	-3,308E-6	-2,086E-5
3	-	1,403E-7
4	_	-4,545E-10
5	_	5,525E-13

В качестве примера, иллюстрирующего работу программы SUPER, приведем результаты расчета *p*-области двухпролетного ЛПД на глубину 0,5 мкм. Результаты автоматизированного проектирования отражены в табл. 2. Погрешность расчетов (в широком диапазоне глубин залегания *p*-области) не превышает 10%.

Таблица 2

Продольный пробег, мкм	Страгглинг пробега, мкм	Энергия, кэВ	Доза внедре- ния, см ⁻²
0,202E-01	0,996E-02	0,600E 01	0,375E 12
0,467E-01	0,212E-01	0,140E 02	0,797E 12
0,953E-01	0,372E-01	0,290E 02	0,140E 13
0,167E 00	0,528E-01	0,520E 02	0,199E 13
0.261E 00	0,653E-01	0,840E 02	0,245E 13
0,374E 00	0,769E-01	0,126E 03	0,289E 13
0,508E 00	0,908E-01	0,183E 03	0,341E 13

Полученные результаты были использованы для создания кремниевого ЛПД четырехмиллиметрового диапазона, работающего в импульсном режиме. Структура $p^+ - p - n - n^+$ двухпролетного ЛПД была сформирована в эпитаксиальных пленках с разбросом толщин 1,1—1,2 мкм. Формирование *p*-области проводилось многократной ионной имплантацией на установке «Лада-20» с последующей диффузией p^+ -области. Выходная импульсная мощность полученных образцов ЛПД сос

тавила не менее 5 Вт, пробивное напряжение 14—18 В. Режимы многократной ионной имплантации для создания *р*-области лавинно-пролетного диода с двойной областью дрейфа приведены в таблице 2.

Программа SUPER реализована на языке Фортран-IV для ЕС ЭВМ. Ввод информации и управление работой программы осуществляется с помощью алфавитно-цифрового дисплея, выходными устройствами являются дисплей и АЦПУ. Сценарий диалога в интерактивном режиме позволяет менять параметры по усмотрению пользователя, например: форму профиля, глубину формирования структуры, тип легирующей примеси, материал подложки. Расчетное время одного варианта при глубине *р*-области менее 0,6 мкм не превышает 5 с. С целью оперативного расчета на рабочем месте инженером-технологом режимов ионной имплантации разработана инженерная версия программы SUPER. Версия реализована на языке Бейсик для малых ЭВМ типа ДВК-2М. Специальной подготовки пользователя для работы с ЭВМ не требуется.

В заключение следует отметить, что в основу алгоритма программы SUPER положена методика, позволяющая произ-

C LATER A

УДК 621.318.44

НАТЯЖНОЕ УСТРОЙСТВО АРНТ 8-60 ДЛЯ НАМОТОЧНЫХ СТАНКОВ

Стабильность процесса пазовой намотки (особенно в период пуска и торможения) значительно зависит от натяжения провода. В связи с этим разработано натяжное устройство АРНТ 8-60 для намотки тонкими проводами, позволяющее стабилизировать натяжение провода на заданном уровне с точностью ± 8% при частоте возмущающих колебаний натяжения до 60 Гц. Быстродействие натяжного устройства можно оценить по практически мгновенному достижению скорости проводоводителем при пазовой намотке 3500 об/мин (линейная скорость движения провода без обрывов может достигать 12 м/с). При этом не требуется устройств плавного разгона и торможения привода, что значительно упрощает конструкцию намоточного станка и систему управления.

Необходимое для намотки натяжение устанавливается по предварительно оттарированному стрелочному вольтметру (индикатору напряжения), встроенному в корпус натяжного устройства, или по подключаемому электронно-лучевому осциллографу, позволяющему наблюдать картину динамического натяжения в течение всего процесса намотки.

Наиболее широкое применение натяжное устройство должно найти, по-видимому, для намотки электродвигателей малой мощности: многовитковых обмоток статоров с наружными пазами; обмоток якорей, в том числе полых; обмоток статоров с внутренними пазами.

Для последнего предусмотрен вариант устройства, создающего натяжение только при скорости движения провода, не равной нулю, что целесообразно в намоточных станках с проводоводителем, движущимся возвратно-поступательно. В этом случае можно программировать изменение натяжения провода на разных участках движения проводоводителя, изменяя на входе устройства напряжение задания натяжения в пределах 0–3 В. водить расчет режимов формирования ионно-легированных структур не только для рассмотренного случая плоскоступенчатого распределения примеси, но и для других видов распределения.

ЛИТЕРАТУРА

ЮБШЕНИЕ

1. Анищенко Л.М., Дружинин А.В., УгловА.А. Ионное легирование полупроводников. — Физика и химия обработки материалов, 1982, № 4, с. 3—19.

2. Риссел Х., Руге И. Ионная имплантация.— М.: Мир, 1983.

3. A 1 1 e n R.M. Simulation of gaussians for ion — implantation profile control.— Electronics Letters, 1969, vol. 5, N 5, p. 111—112.

4. Д р у ж и н и н А.В., Р у д н е в А.И. Вычислительный технологический эксперимент при создании сложных ионнолегированных структур.— В кн.: Низкотемпературное легирование полупроводников и многослойных структур микроэлектроники.— Ижевск, 1987, с. 73.

Статья поступила 19 октября 1989 г.

Техническая характеристика

Тип намотки пазовая или открытая
Диаметр провода, мм
Линейная скорость провода при пазовой намотке, м/с, не более
Статическое натяжение на выходе натяжного устройства, Н
Погрешность стабилизации заданного натяжения провода (на выходе устройства), не более ±8,0
Частота возмущающих колебаний натяжения, Гц до 60 Продолжительность заведения провода в натяжное устройство, с, не более
Регулирование статического натяжения плавное
Продолжительность настройки устройства на выбранный режим намотки, мин, не более
Габаритные размеры, мм
Масса, кг
Ориентировочная цена, тыс. руб

Индикация статического натяжения в процессе настройки на режим намотки и динамического натяжения на выходе натяжного устройства осуществляется стрелкой на шкале прибора, но возможна также на осциллографе или самописце. Регулирование статического натяжения плавное.

Динамический датчик имеет статическую тарировку натяжения. Устройство обеспечивает неповреждаемость изоляции провода при прохождении устройства (которая определяется по неизменному значению пробивного напряжения образцов провода до и после намотки), возможность автоматического управления натяжением по определенному закону и сохранение ранее установленного статического натяжения при перезаправке провода.

Применение натяжного устройства АРНТ 8—60 позволяет упростить конструкцию намоточных станков, повысить качество обмоток.

Благодаря подобным натяжным устройствам намоточные станки превосходят по параметрам зарубежные аналоги.

Поставка и внедрение натяжного устройства АРНТ 8—60 после заключения договора осуществляется в течение одного-двух кварталов. Документация на разработанное устройство не продается. О.В.Горачек, А.Н.Листопад

ИМПУЛЬСНОЕ ЛАЗЕРНОЕ УПРОЧНЕНИЕ ТЕХНОЛОГИЧЕСКОЙ ОСНАСТКИ И ИНСТРУМЕНТА

В.Х.Шериев, И.М.Жанкишиев, С.А.Ашинов

Разработанный способ упрочнения деталей малого днаметра увеличивает износостойкость в 1,3—1,5 раза.

Износостойкость инструмента и технологической оснастки определяется сочетанием физико-химических и геометрических характеристик изнашиваемых поверхностей.

Для улучшения механических свойств разнообразного по форме и назначению инструмента и оснастки может быть использовано лазерное излучение [1, 2]. Например, микротвердость термически закаленных образцов сталей Р18 X12M может быть увеличена с 8000 до 11000 H/см². Однако существуют ограничения по геометрическим размерам: если они сравнимы с диаметром сфокусированного излучения, то пользоваться этим методом не рекомендуется, так как равномерность распределения микротвердости, ее средняя величина и состояние поверхности получаются значительно хуже, чем на массивных образцах.

Разработанный способ лазерного импульсного упрочнения в жидкой среде инструмента и оснастки малых размеров увеличивает механическую стойкость к износу в 1,5 раза. Использовался ОКГ «Квант-15» с двумя активными элементами ИАГ (Nd). Длина волны излучения — 1,06 мкм, плотность мощности — 10^4 — 10^5 Вт/см², длительность импульса — 5 мс и днаметр пятна сфокусированного излучения примерно равен 1,9—2,0 мм [3—5]. Мощность и энергию импульса определяли измерителем средней энергии и мощности лазерного излучения ИМО-2Н. Микротвердость измеряли на приборе ПМТ-3 при нагрузке 1 Н.

Исследовалась зависимость влияния лазерного излучения на микротвердость и равномерность распределения микротвердости на рабочей поверхности прокалывающих пуансонов из сталей Р18 и Х12М (цилиндрические образцы диаметром 1,5 мм и длиной 20 мм, рабочая поверхность — торец), служащих для пробивки отверстий для выводов в металлических корпусах транзисторов.

Установлено, что режим обработки, принятый для массивных образцов (среда аргона или азота, плотность мощности 2,8—3,0 Вт/см² для стали Р18 и 3,5— 3,7 Вт/см² для стали Х12М), вызывает оплавление рабочих кромок пуансонов вследствие недостаточного теплоотвода. При уменьшении плотности мощности ухудшается равномерность распределения микротвердости по поверхности, а среднее значение величины микротвердости невозможно получить выше 5000—

Рис. 2. Распределение микротвердости по глубине: 1 массивного образца (обработка в азоте); 2 — прокалывающих пуансонов в центре торца (в воде); 3 — прокалывающих пуансонов на периферии (в жидком азоте) 5500 H/см². Проведение процесса упрочнения в двухимпульсном режиме с перекрытием рабочих зон излучения на 50% результаты не улучшило.

Для изменения условий теплоотвода с поверхности пуансона процесс упрочнения проводился в деионизованной воде и жидком азоте в специально изготовленных кюветах с держателями (торцы образцов были опущены на 0,5—1,0 мм ниже уровня жидкой среды, температура инструмента перед обработкой доводилась до температуры жидкости). Результаты приведены в таблице и на рис. 1 и 2.

Марка Среда мате- риала	Среда Пл но моц	Плот- ность мощно-	Плот- Средняя ность микро- мощно- твер-	Среднее число уда- ров до износа		
	сти им- пульсов, <i>P</i> · 10 ⁴ Вт/см ²	дость, H ₁₀₀ , H/мм ²	до обра- ботки	после обра- ботки		
P18	Деиони- зован- ная во- да	3,3—3,5	9400	38500— 40000	56000	
	Жидкий азот	3,5—3,7	9500	38500- 40000	55000	
X12M	Деиони- эован- ная во- да	4,0—4,2	9800	38500— 40000	51000	
	Жндкий азот	4,3—4,5	9300	38500— 40000	59000	

Из таблицы видно, что плотность мощности при обработке в жидком азоте больше, чем при обработке в деионизованной воде. Это можно объяснить бо́льшим, чем в деионизованной воде, рассеиванием и поглощением энергии.

Средняя микротвердость обработанных участков составила 9000—9500 Н/мм². Данные по обработке пуансонов в деионизованной воде и жидком азоте почти совпадают (см. рис. 1, кривая 2). Минимальные значения микротвердости 8000—8500 Н/мм² приходились на рабочие кромки. Глубина закаленной зоны составляет в центре обрабатываемой поверхности 0,9—1,0 мм, на краях — 0,6—0,7 мм. Ниже этой зоны располагается зона отпуска толщиной 0,1—0,2 мм с микротвердостью 6500—7000 Н/мм² (см. рис. 2).

Таким образом, при лазерном импульсном упрочнении прокалывающих пуансонов в жидком азоте и деионизованной воде их износостойкость, независимо от выбора жидкой среды, повысилась в 1,3—1,5 раза.

литература

1. Методы определения оптимальных режимов лазерной закалки сталей и контроля ее качества/Е.В.Бративник, В.С.Великих, В.П.Гончаренко, В.С.Картавцев.— Металловедение и термическая обработка металлов, 1982, № 9, с. 36.

2. Лазерное упрочнение и перспективы его применения в инструментальном производстве/А.Д.Загоруй, В.П.Гончаренко, В.С.Картавцев. Электронная техника. Сер. 7. Технология, организация производства и оборудование, 1984, вып. 3, с. 27.

3. Реди Дж. Промышленное применение лазеров. — М.: Мир, 1981, с. 381—382.

4. Там же, с. 422—423.

5. Рыкалин Н.Н., Углов А.А. Состояние и перспективы лазерной технологии в металлургии.— Поверхность. Физика. Химия. Механика, 1983, № 6, с. 5.

Статья поступила 25 мая 1989 г.

ОСАЖДЕНИЕ МНОГОСЛОЙНЫХ ПОКРЫТИЙ С ИСПОЛЬЗОВАНИЕМ МАГНЕТРОННЫХ РАСПЫЛИТЕЛЬНЫХ УСТРОЙСТВ

З.В.Берншвили, Г.А.Схиладзе И.Г.Гадахабадзе,

линии, определяющей оптимальную конфигурацию области плазмы, следующее:

$$I = \sqrt{\left(\frac{r}{r_0}\right)^2 - 1} - \operatorname{are} \cos \frac{r_0}{r} + \varphi_0.$$

Ионно-плазменное распыление материалов в вакууме нашло широкое применение в технологии формирования тонких пленок для контактов и межсоединений кристаллов полупроводниковых ИС. В существующих магнетронных распылительных устройствах (МРУ) с целью снижения рабочего давления, улучшения чистоты процессов и достижения высокой скорости распыления применяются скрещенные электрические и магнитные поля, интенсифицирующие и локализующие плазму непосредственно в зоне распыления материала [1].

Одним из основных направлений усовершенствования конструкции МРУ является создание катодного узла с эффективным охлаждением, расширенной зоной эрозии мишени, т.е. обладающим повышенным коэффициентом использования материала мишени, снижением общих габаритов и массы, повышением производительности (скорости процесса осаждения) и равномерностью конденсации распыляемого материала.

Анализ современных методов и устройств магнетронного распыления показал, что наиболее эффективное решение этой задачи достигается за счет использования магнетронов с вращающимся магнитным блоком при условии формирования такой области плазмы, которая может обеспечить равномерную эрозию материала мишени по всей ее поверхности.

Для обеспечения устойчивости стационарного состояния плазмы ее область должна быть замкнутой и иметь постоянную ширину. Выражение для осевой

В отличие от традиционного, в разработанном магнетроне во внутренней части катодного узла вращение магнитного блока осуществляется с помощью охлаждаемой воды. Конструкция обеспечивает перемещение охлаждаемой воды в катодном узле в виде крупномасштабного потока вместо ламинарного, при таком течении вода приобретает повышенную способность к передаче тепла и тем самым обеспечивает эффективное охлаждение распыляемой мишени и всего катодного узла.

Конструктивная схема МРУ с вращающимся магнитным блоком приведена на рисунке. Поток охлаждаемой воды, подаваемый под давлением в полость катодного узла через фланец, падает на лепестки держателя магнитной системы и приводит во вращение весь магнитный блок. Вращение магнитного блока под распыляемой мишенью вызывает перемещение зоны эрозни на поверхности мишени, повеохность мишени последовательно подвергается интенсивному распылению. В результате зона эрозии мишени расширяется и существенно снижается ее тепловая нагрузка. Тем самым обеспечиваются повышение коэффициента использования материала мишени (до 70%) и высокая равномерность скорости распыления. Разброс по толщине конденсированных пленок на пластине диа-

метром 100 мм при планетарном вращении не превышает ±4%.

Основные технические параметры разработанного МРУ с вращающимся магнитным блоком: диаметр распыляемой мишени — 100 мм, толщина — 2—7 мм; индуктивность магнитного поля на поверхности мишени не менее 0,025 Тл; скорость вращения магкитного блока МРУ при подаче охлаждающей воды не менее 30 об/мин. МРУ обеспечивает непрерывную работу в течение 15 мин в режиме: давление аргона 0,13—1,3 Па, напряжение на мишени 400—500 В, ток распыления — (5±0,5)А. Диаметр МРУ — 120 мм, высота — 180 мм, масса — 1,9 кг.

МРУ с вращающимся магнитным блоком в комплексе с вакуумным оборудованием типа УВН и 01НИ-7-006 применялись при нанесении пленок платины, алюминия, титан-вольфрама и силицида платины.

На базе этого комплекса был реализован технологический маршрут формирования контактов и межсоединений ИС на основе системы PtSi—TiW—Al, обеспечивающий высокую воспроизводимость и эксплуатационную стабильность выпускаемых изделий.

В качестве распыляемого материала использовались диски из платины, мишени из титана и вольфрама и алюминия особой чистоты.

Низкий предварительный вакуум 3.10⁻⁵ Па, пониженное рабочее давление ОСЧ аргона в реакторе 0,013 Па, травление и химическая обработка кремниевых пластин в профильтрованных ОСЧ-травителях обеспечили необходимую чистоту границы раздела кремний—платина, пленок силицида платины и титан-вольфрама.

Технологический процесс создания силицида платины включает предварительный нагрев пластин со структурами и ИС в вакуумной камере непосредственно перед напылением платины до 350°С в течение 5—7 мин. Режим магнетронного распыления платины следующий: напряжение на мишени 450—500 В, ток распыления — 0,4 А, время напыления — 120 с. Полученные пленки толщиной 30—40 нм отжигались в вакууме при температуре 450°С в течение 10 мин. Окончательное формирование силицида платины осуществлялось при отжиге в среде азота при температуре 510°С в течение 10 мин.

Осаждение барьерного слоя TiW и алюминия в едином технологическом цикле производилось на агрегате 01HИ-7-006 с использованием МРУ. Режимы осаждения слоя TiW при одновременном распылении мишеней из двух изолированных МРУ следующие: напряжение на мишенях UTi =400 B, UW = 420 B; токи распыления /Ti =1,5 A, /W =2,0 A. Время напыления 4 мин. Толщина полученных пленок составляда 0,25—0,03 мкм. Удельное сопротивление полученных пленок TiW равно 2—4 Ом-см и соответствует данным, опубликованным в литературе [3]. Состав пленок исследовался с помощью оже-электронной спектроскопии и составляет примерно 10 вес. % титана.

Резкое улучшение обратных характеристик диодов Шотки, особенно диодов без охранного кольца, объясняется повышением качества напыления пленок платины и титан-вольфрама в контактных окнах кристаллов ИС, обусловленного расширением зоны эрозии распыляемой мишени МРУ с вращающимся магнит-ным блоком. Например, при обратных токах /обр = 10 мА падение напряжения на диодах Шотки без охранного кольца U_{AШ} = 25 В (при норме 12 В).

Таким образом, разработанное МРУ с воашающимся магнитным блоком нашло широкое применение в технологии формирования контактов и межсоединений на основе системы PtSi—TiW—Al.

ЛИТЕРАТУРА

1. Современные магнетронные распыли-тельные устройства/В.А.Лабунов, Н.И.Да-нилович, А.С.Уксусов, В.Е.Минаичев.— Зарубежная электронная техника, 1982, вып. 19, с. 3.

2. Магнитная система магнетронного распылительного устройства с вращающимся магнитным блоком/З.В.Беришвили, И.Г.Га-дахабадзе, Г.А.Схиладзе, З.Н.Чубинишвили.— Электронная техника. Сер. 7. Texнология, организация производства и обору-дование, 1989, вып. 2, с. 28. 3. В а л е е в А.С. Технология много-

уровневых межсоединений современных би-полярных СБИС.— Электронная техника. Сер. 3. Микровлектроника, 1984, вып. 4, Сер. с. 64.

Статья поступила 20 мая 1989 г.

УДК 621.794:678

НАНЕСЕНИЕ ПОЛИМЕРНЫХ ПОКРЫТИЙ ДЛЯ КОРРОЗИОННОЙ ЗАЩИТЫ ДЕТАЛЕЙ СЛОЖНЫХ ПРОФИЛЕЙ

канд.техн.наук В.Х.Шериев,

Современный уровень технологии предъявляет постоянно возрастающие требования к чистоте и коррозионной стойкости рабочих поверхностей оборудования, применяемого в производстве изделий электронной техники. Особенно это важно для установок химической обработки.

В автоматизированной установке пневмовихревой обработки пластин имеется четыре камеры-кассеты. При проведении химической обработки эти кассеты с пластинами вставляются в пневматические диски и герметизируются, одновременно в камеру подаются химические реактивы, денонизованная вода и азот. Камера-кассета выполнена из цельноблочного фторопласта, что удовлетворяет требованию высокой коррозионной стойкости. Однако большая материалоемкость такой кассеты, а также сложность обработки фторопласта при ее изготовлении и нежесткость конструкции привели к необходимости замены фторопласта на алюминий и его сплавы, что должно обеспечить необходимую жесткость конструкции. Для антикоррозионной защиты деталей было предложено использовать пентапласт A и фторопласт Ф-30П. Оба материала обладают высокой химической стойкостью, малой диффузионной проницаемостью при повышенных температурах, имеют удовлетворительную механическую прочность.

В камере-кассете (рисунок) корпус и перемычки выполнены из алюминия, что значительно снижает собственный вес кассеты. Все элементы имеют антикоррозионное полимерное покрытие, получаемое по порошковой технологии. Надо отметить, что полимерные пленки, получаемые путем оплавления порошковых полимеров, обладают монолитной структурой и малой газопроницаемостью, что очень важно при работе этих пленок в агрессивных средах.

Из существующих нескольких способов нанесения порошковых полимерных покрытий был выбран метод с при-

менением электростатического поля, основанный на использовании силовод. в. возоновлев, го взаимодействия электрических по-канд.физ.-мат.наук Ю.К.Альтудов лей высокой напряженности и сочетании с тонкодисперсными частицами полимера.

Достоинства метода

- отсутствие предварительного нагрева покрываемой детали;

- возможность получения равномерных покрытий толщиной от 25 до 500 мкм на изделиях сложной конфигурации;

снижение потерь порошкового материала при напылении до минимума; - возможность механизации и автоматизации процесса напыления;

- универсальность, высокая производительность процесса, высокое качество покрытой поверхности.

Мелкодисперсные частицы полимера заряжаются в поле короткого разряда между высоковольтным электродом и заземленной деталью и переносятся под лействием электрических и аэромеханических сил к противоположно заряженному изделию. Толщина наносимого слоя регулировалась концентрацией порошка, полимера и временем нанесения (от 5 до 40 с). Детали, покрытые полимером, оплавляли в печи при тем-пературе 230—250°С. Продолжитель-

Фланцы

ность выдержки изделия в печи и температурный режим устанавливался в зависимости от марки полимера.

Нанесение полимерных покрытий является многостадийным технологическим процессом и включает следующие операции: подготовку поверхности под покрытие, нанесение полимерного слоя порошка на холодную поверхность (1-й слой), оплавление порошка, нанесение 2-го слоя полимерного порошка на горячую поверхность (в зависимости от требуемой толщины покрытия наносят 3- и 4-й слои по аналогии со 2-м), оплавление порошка, охлаждение изделия, контроль качества покрытия.

Покрываемая полимером поверхность должна быть ровной, без заусениц, раковин и других видимых дефектов. Открытые кромки и углы скруглялись, а сварные швы зачищались. Очистку поверхности производили методом химического травления, так как помимо молекулярного взаимодействия между покрытием и подложкой существует механическое взаимодействие, обусловленное проникновением жидкого материала в поры и трещины поверхности металли-ческой подложки. Увеличивая истинную поверхность контакта полимер-металл и искусственно создавая возможные трещины, поры и углубления, можно повысить механическое взаимодействие, что приводит к увеличению сцепления между полимером и металлом. Перерыв во времени между обработкой и нанесением полимерного покрытия не должен превышать 4-6 ч.

Полученное антикоррозионное полимерное покрытие проверяли на качество по следующим критериям: внешнему виду, толшине и сплошности покоытия.

Внешний вид контролировался визуально, определение толщины проводилось на толщинометре МТ-20Н. Сплошность покрытия определялась прибором ЛКД-1 и дефектоскопом ЭД-4.

Были получены полимерные пленки толщиной 200 мкм (для фторопласта) и 170 мкм (для пентапласта), неравномерность покрытия составила ±12,8 и ±11,2 мкм соответственно. Величина адгезии полимерной пленки к покрываемой поверхности соответствуют 1 классу по 4-балльной шкале и 0-му- по 6балльной.

Разработанная технология получения полимерных покрытий обеспечивает высокую коррозионную стойкость деталей при их эксплуатации в агрессивных средах и при повышенных температурах.

Статья поступила 12 мая 1989 г

УДК 621.3.049.77.002.72

АВТОМАТИЧЕСКОЕ ОБОРУДОВАНИЕ ПРИСОЕДИНЕНИЯ ВЫВОДОВ ИС МАССОВЫХ СЕРИЙ

С.И.Шуньков, В.В.Нестерович

Разработаны автоматы присоединения выводов ЭМ-4060П и ЭМ-4020П для ИС массовых серий, более совершенные по сравнению с широко применяемым автоматическим оборудованием присоединения выводов ЭМ-4060 и ЭМ-4020Б. В новых моделях используется единая стойка управления, состоящая из однотипных блоков управления, распознавания, питания ультразвуковых генераторов (УЗГ), применены также однотипные загрузочно-разгрузочные устройства (ЗРУ) и оптико-телевизионные системы.

Система управления автоматами построена на основе микропроцессора КР580ВМ80А, но с применением более современной элементной базы. Основное внимание при создании автоматов было уделено совершенствованию систем технического зрения и сварки.

Система технического зрения (СТЗ) позволяет распознавать и определять положение кристаллов ИС и траверс. Положение корпуса определяется по одной траверсе при смещении только по линейным координатам, и по двум траверсам — при смещении по линейным координатам и по углу. СТЗ может определять положение каждой траверсы индивидуально.

Распознавание осуществляется методом структурного согласования фильтрованного программируемым трафаретом изображения.

Техническая характеристика СТЗ

Поле зрения в плоскости предмета, мм $1,4 \times 1,6$
Дискретизация изображения 256×256
Число уровней квантования видеосигнала
Число входов стандартного видеосигнала
Минимальное время распознавания одного
фрагмента изображения (при использовании одного трафарета), мс

Усовершенствованная УЗ система автоматов характеризуется следующими особенностями. Предусмотрена непрерывная автоматическая подстройка частоты (АПЧ) в полосе не менее 5 кГц с погрешностью отслеживания частоты резонанса ультразвукового преобразователя (УЗП) не более 20 Гц и временем захвата не более 20 мс. Встроенная модернизированная система контроля функционирования и компенсации ошибок АПЧ позволяет вдвое (по сравнению с ЭМ-4020Б) уменьшить максимальную длительность компенсации ошибок АПЧ (время модуляции), увеличить устойчивость АПЧ и обеспечить заблаговременную сигнализацию об отказе УЗ системы.

Имеется датчик, сигнализирующий о создании требуемого акустического контакта между инструментом УЗП и соединяемыми деталями и позволяющий не только автоматически определить позицию сварки по координате Z, но и увеличить воспроизводимость качества соединений за счет автоматического контроля акустических условий в начале процесса сварки.

Техническая характеристика ЭМ-4060П

Производительность, сварок/ч	28000
(14	-выводных)
Лиаметр присоединяемых выводов, мм	,025-0,040
Погрешность присоединения, мм	$ \pm 0,02$
Размеры рабочего поля, мм	$\dots 20 \times 20$
Размеры обрабатываемых кристаллов, мм	. 0,9×0,9-
	10×10
Усилие сжатия, Н	0,2—2
Максимальное число присоединяемых выводов	
для одной программы	128

ЭМ-4060П

Подача на инструмент ультразвука (дежурного сигнала) в промежутках между сварками снижает трение между инструментом и проволокой при формировании петли и облегчает отделение инструмента от формированного соединения.

Встроенное устройство контроля сварочных систем, программно и аппаратно поддержанное управляющей системой установки, позволяет осуществить функциональное диагностирование УЗ системы и непрерывное наблюдение за ходом процесса формирования каждого сварного соединения и на этой основе организовать 100%-ный контроль качества при обработке ИС любого типа и в любом корпусе, а также выдать рекомендации для корректировки режимов работы установки.

Автоматическое уменьшение амплитуды колебаний инструмента УЗП по мере образования соединения в сочетании с малой (обычно 5—20 мс) длительностью сварки позволяет устранить усталостное разрушение материалов в зоне сварки, фрикционный срыв инструмента с поверхности проволоки, что увеличивает выход годных и стойкость инструмента.

Новая система согласования УЗГ и УЗП в совокупности с широкой полосой АПЧ обеспечивает стабильность эксплуатационных свойств УЗ системы.

Конструктивно основные блоки автоматов выполнены из свинчиваемых каркасов. Типовые размеры печатных плат составляют 144,45×220 мм. Проводной монтаж в блоках значительно уменьшен за счет применения многослойных печатных кросс-плат и выполнения межблочных связей путем подключения стыковочных кабелей с передних панелей блоков.

Разработанное оборудование обладает улучшенными эксплуатационными характеристиками благодаря расширению функций встроенной системы диагностики, улучшению тепловых режимов ЭРЭ и снижению номенклатуры модульных систем управления и функциональных плат.

Значительно расширены функционально-технологические возможности за счет снижения требований к контрастности обрабатываемых изделий и реализации двухуровневого распознавания, расширения объемов памяти запоминающих устройств, гибкости загрузочноразгрузочного устройства (возможности переналадки устройства для подачи отрезков лент или спутников шириной до 64 мм), применения термозвуковой сварки.

Автомат ЭМ-4060 имеет три модификации (табл. 1).

Техническая характеристика автомата ЭМ-4020П

Производительность, присоед./ч 14000
280 ИС/ч
(16-выводных)
Погрешность присоединения, мм ±0,025
Размеры рабочего поля, мм 25×25
Дискретность позиционирования, мм
Диаметр алюминиевой проволоки, мкм
Усилие нагружения, Н
Рабочая частота, кГц 66±6
Потребляемая мощность, кВт 1
Максимальное число программ
Максимальное число присоединяемых выводов
Объект автоматического распознавания кристалл,
корпус
Габаритные размеры, мм 1320×750×1930
Масса, кг
Автомат ЭМ-4020П имеет пять модификаций
(табл. 2).

Модель	Тип корпуса (отрезка), размеры отрезков, мм	Вместимость ЗРУ, шт.	Максималь- ное число выводов на приборе, шт. (размеры кристалла, мм)
ЭМ-4060П	Отрезки лент (ОСТ 11.730.900-77) Длина 120—232 Ширина 20—64 Шаг 4—40	45 (трехмага- зинное уст- ройство)	128 (10×10)
ЭМ-4060П-1 (исполне- ние для ГПМ)	Отрезки лент (ОСТ 11.730.900-77) Длина 232 Ширина 28 Шаг 15	240	128 (10×10)
ЭМ-4060П-2	Многовыводные от- резки лент Длина 120—232 Ширина 20—64 Шаг 15—52	45 (трехмага- зинное уст- ройство)	400 (15×15)

Таблица 2

Модель	Тип корпуса (отрезка)	Вместимость ЗРУ, шт.
ЭМ-4020П	«Схема-69» (в 10-мест- ных спутниках)	450 (трехмагазинное ЗРУ)
ЭМ-4020П-1	Стеклокерамический корпус (в многоместной плоской кассете с раз- мерами 215×133 мм)	700 (СКК ДИП с базой 7,5 мм)
ЭМ-4020П-2	ТО-5 (в 25-местных спутниках)	200 (двухмагазинное ЗРУ)
ЭМ-4020П-3	Металлокерамический корпус размерами до 40×40 мм (в многомест- ной плоской кассете с размерами 215×133 мм)	200 (при размерах 40×40 мм)
ЭМ-4020П-4	Отрезки лент ФЭП-САМ	45 отрезков (трехмагазинное ЗРУ)

Автоматы ЭМ-4060П, ЭМ-4020П созданы с учетом особенностей сборки широкой номенклатуры ИС и могут служить базой для оснащения сборочных производств и при сборке других ИЭТ.

Статья поступила 24 июля 1989 г.

32

УДК 621.365.4

ВЫСОКОВАКУУМНАЯ ПЕЧЬ СКОРОСТНОГО НАГРЕВА

Камерная печь периодического действия обеспечивает быстрый нагрев в высоком вакууме и ускоренное охлаждение в низком вакууме при отжиге тонкостенных круглоцилиндрических изделий и тонких пластин, а также возможность пайки твердыми припоями по традиционной технологии круглоцилиндрических узлов.

Нагрев осуществляется по принципу отражательной печи [1]. Круглоцилиндрическая оправка, на поверхности которой размещаются обрабатываемые пластины, устанавливается в рабочее пространство печи соосно ее оптической оси и нагревается излучением галогенных ламп накаливания (ГЛН), упорядоченным водоохлаждаемыми эллипсоцилиндрическими отражателями, в ближних фокальных осях которых устанавливаются ГЛН, а дальние (рабочие) фокальные оси совмещены и образуют оптическую ось печи.

При двухстороннем облучении пластин используется оправка по форме полуцилиндра. Для защиты зеркальных поверхностей отражателей от вакуумного напыления рабочее пространство печи по диаметру ограждено кварцевой трубой (прозрачной для излучения ГЛН), концы которой выведены за пределы зоны нагрева. Рабочий вакуум в печи обеспечивается турбомолекулярным насосом 01АБ-1500-004.

Техническая характеристика

Размеры рабочего пространства, мм

диаметр
длина
Максимальная температура нагрева
на изделии, °С 1200
Предельное давление остаточных
газов в рабочей камере, Па 2 · 10-4
Объем рабочей камеры, л
Максимальная мощность нагревателя
(при напряжении 380 В), кВт 30
Номинальная мощность нагревателя
(при напряжении 220 В), кВт
Габаритные
размеры, мм 1400×2100×1700
Масса, кг

Печь может быть использована для импульсной термообработки в секундном диапазоне длительностей, имеющей ряд преимуществ по сравнению с традиционной длительной термообработкой [2-4].

ЛИТЕРАТУРА

1. Зворыкин Д.Б., Александрова А.Т., Байкан А.В., Алексан Аростова А.Т., Байкаль цев Б.П. Отражательные печи инфракрасного нагрева. — М.: Машиностроение, 1985. — 176 с.
2. Лабунов В.А., Борисенко В.Е., Грибовски й В.В. Импульсная термообработка материалов полупроводниковой

электроники некогерентным светом.-3apyбежная электронная техника, 1983, № 1, c. 3-58.

3. Оборудование для импульсной термообработки материалов полупроводниковой электроники некогерентным светом/В.Е.Борисенко, С.Н.Корнилов, В.А.Лабунов и др. рисенко, с.п. корнилов, Б.А.Лабунов и др.— Зарубежная электронная техника, 1985, № 6, с. 45—65. 4. Борисенко В.Е., Самуй-лов В.А. Твердотельные процессы в поли-

кристаллическом кремнии при импульсной термообработке некогерентным светом.— Зарубежная электронная техника, 1987, № 1, c. 46-68.

М.И.Федоров, В.А.Ульянов, В.Н.Дорохин

УДК 621.365.46

КОНВЕЙЕРНАЯ ЭЛЕКТРОПЕЧЬ ИК НАГРЕВА «АНГАРА»

Электропечь может найти применение для сушки покрытий на основе эпоксидных смол, а также в производстве товаров народного потребления и пищевой промышленности.

Для термообработки ИЭТ, изготовляемых по толстопленочной технологии, требуется специализированное конвейерное оборудование [1-3] с учетом необходимой производительности, геометрии изделий, особенностей химического состава, производственных площадей.

В связи с этим разработана конвейерная электропечь ИК нагрева "Ангара", предназначенная для сушки герметика при температуре 200°С в воздушной среде в производстве вакуумных люминесцентных индикаторов.

Электропечь содержит: установленную на каркасе трехзонную нагревательную камеру, на входе и выходе которой имеются столы загрузки и выгрузки; конвейерную ленту сетчатой конструкции с приводным устройством; панели ИК нагрева, между трубчатыми нагревателями которых (в середине каждой из зон) помещен горячий спай термопары ТХК; систему вытяжки, позволяющую осуществлять отбор газообразного продукта термообработки из области его интенсивного образования (на границе зон) и улавливать печные газы в местах загрузки и выгрузки изделий.

Электропечь "Ангара" - безмуфельная, что снижает ее тепловую инерцию. Рабочее пространство печи ограничено внутренними поверхностями сваренных между собой теплоизоляционных блоков из листовой жаропрочной нержавеющей стали аустенитного класса 12Х18Н10Т, которая образует оболочку, заполненную ватой каолинового состава.

Высокие антикоррозионные свойства стали 12Х18Н10Т [4] позволяют осуществлять процессы термообработки различных материалов.

Применение в качестве теплоизоляции ваты каолинового состава [5] повышает технологичность сборки и снижает мощность теплопотерь через футеровку нагревательной камеры.

С целью повышения эффективности ИК нагрева поверхности стенок теплоизоляционных блоков, обращенные в рабочее пространство, и экран панели отполированы до чистоты 0,63.

Для обеспечения режима, соответствующего задан-
ной температурной кривой, панели ИК нагрева (состоящие из кварцевых трубчатых нагревателей и экрана) устанавливаются на расстоянии от 100 до 200 мм от конвейерной ленты.

Высокая производительность электропечи "Ангара" обусловлена грузоподъемностью конвейера, а также удобством обслуживания операций загрузки изделий. Конвейерная лента изготовлена в виде плетеной объемной сетки из проволоки диаметром 2 мм (сталь 12X18H10T) и приводится в действие ведущим барабаном, покрытым резиной. Для удобства обслуживания стол загрузки выполнен в двух вариантах: длиной 2,5 м — для ручной загрузки изделий и длиной 1,5 м для загрузки изделий при помощи манипуляторов.

Техническая характеристика

Производительность (для стекломасс
и стеклогерметика), шт./ч 2400-3000
Размеры рабочего пространства, мм
(по конвейерной ленте регулируется
положением нагревателей)
ширина
высота 100-200
длина регулируемых зон нагрева
Число регулируемых зон нагрева 3
Диапазон рабочих температур, °С 80-200
Погрешность поддержания рабочих температур, °С ±15
Диапазон регулирования скорости
движения конвейерной ленты, мм/с 5—20
Погрешность поддержания скорости
конвейерной ленты, $\%$ ±5
Максимальная потребляемая мощность, кВ · А 8
Габаритные размеры, мм

В электропечи "Ангара" применена бестрансформаторная схема электропитания нагревателей, автоматическое поддержание температуры которых осуществляется с помощью преобразователей ПИ.ТРА и автоматических регуляторов ПР.ТРА. Регулирование температуры непрерывное и происходит по пропорциональноинтегрально-дифференциальному закону. Для снижения помех симисторы открывают в момент перехода фазового напряжения через нуль.

Коэффициенты удельной энергоемкости и материалоемкости конструкции составили 0,035 кВт/^оС и 25 кг/°С, что соответствует показателям аналога KSP8-132Е фирмы NEC (Япония). Электропечь "Ангара" малоинерционна: время достижения температуры 200°С в режиме холостого хода составляет 12-15 мин. Скорость подъема температуры стеклоизделия (зафиксированная контрольной термопарой) составляет 0,5-2,1 °С/с в зависимости от массы изделий с технологической оснасткой. Максимальная грузоподъемность конвейерной ленты, вызывающая деформации 3-5% в течение 2000 ч, не превышает 18 кг/м.

ЛИТЕРАТУРА

1. Печь радиационной сушки СР-240. Проспект фирмы ВТИ (США).

2. Печь ИК нагрева КSP8-132Е. Проспект фирмы NEC (Япония), 1985 г.

3. Печь инфракрасной сушки ДО-4350. Проспект фирмы

«Йозеф Эгли» (Швейцария). 4. Электротермическое оборудование (справочник)/Под общ. ред. А.П.Альтгаузена.— М.: Энергия, 1980.— 146 с.

5. Применение волокнистых огнеупорных материалов в футеровках промышленных печей: Обзорная информация. Вып. 4/ Минмонтажстрой СССР. ЦБНТИ. – М., 1982.

КРЕМНИЕВЫЕ ПОЛЕВЫЕ ТРАНЗИСТОРЫ С ДВУМЯ ИЗОЛИРОВАННЫМИ ЗАТВОРАМИ В ПЛАСТМАССОВЫХ КОРПУСАХ

		КП327А	КП327Б
Крутизна вольт характеристики не менее	г-амперной 4, мл В,	9,5	9,5
Коэффициент і	шума, дБ	3,9 при	2,8 при
		/=8·10″Гц	j́ = 2⋅10 [×] Γι
Коэффициент мощности, дБ,	усиления по не менее	13	19
Коэффициент передачи, дБ,	обратной не более	30 при / =	30 8 · 10 [#] Гц
КП327А 1 руб. 55 коп.	стоимо	с ть тр	КП327Б уб. 45 коп.
КП327А 1 руб.55 коп. дприятия , о борах, просим	СТОИМО рганизации, о обращатьс:	СТЬ 1 р заинтересс я по адрес	КП327Б уб. 45 коп. Эванные су: 28710
КП327А 1 руб. 55 коп. дприятия , О борах, просим инница, ул. В	СТОИМО рганизации, л обращатьс: атутина, 18,	СТЬ 1 р Заинтересс я по адрес ПО «Октя	КП327Б уб. 45 коп. ⊃ванные су: 28710 5рь»

Контрольно-измерительная аппаратура

удк 621.3.049.77.002.56 УСТАНОВКА КОНТРОЛЯ МИКРОРАЗМЕРОВ ЭМ-6039

В.И.Кравцова, Ю.Н.Луговик, В.И.Резников, А.И.Савиковский, Г.А.Трапашко, В.В.Хандецкий

Предназначена для контроля критических размеров элементов топологии на полупроводниковых пластинах и фотошаблонах в условиях производства ИС.

Установка состоит из оптико-механического устройства, устройства управления и стола оператора. Оптико-механическое устройство сконструировано на базе специализированного оптического микроскопа и расположено на столе оператора на специальных амортизаторах. Устройство управления включает в себя персональный вычислительный комплекс (ПВК) «Электроника МС 0585.03», блок управления и два пульта (пульты размещены на столе оператора).

Установка ЭМ-6039 рассчитана на ручную загрузку объектов измерения (полупроводниковых пластин и фотошаблонов) и содержит следующие основные функциональные узлы и системы: оптический микроскоп для работы в проходящем и отраженном свете с дистанционной сменой объективов; автоматический предметный столик с устройством ориентации объектов измерения; систему автофокусировки; фотоэлектрическую систему для измерения размеров элементов; систему управления для обработки и выдачи результатов измерений и для управления предметным столиком, автофокусировкой и уровнем освещенности.

В основу работы установки ЭМ-6039 положен метод видеосканирования увеличенного изображения измеряемой линии (элемента) с помощью линейного формирователя видеосигнала на приборе с зарядовой связью (ЛФПЗС). Сигналы с ЛФПЗС обрабатываются одноплатной микроЭВМ в блоке управления, информация с которой затем поступает в ПВК. В установке полностью автоматизирован процесс измерения. Она позволяет при работе по заданной программе сфокусироваться на объеме измерения, провести измерения элемента полупроводниковой структуры заданное число раз и в заданных местах, а также статистическую обработку полученной измерительной информации, автоматически совершить обход контролируемых элементов на поверхности фотошаблона или полупроводниковой пластины, распечатать протокол измерений, осуществить диагностику неисправностей и некорректных действий оператора, автоматически провести калибровку по эталону ширины и измерения с учетом поправок.

Техническая характеристика

Пределы контролируемых размеров
при максимальном увеличении
(объектив 100 [×]), мкм 0,7-30
Размеры минимального контролиру-
емого элемента, мкм
Среднеквадратическое отклонение
(o) случайной составляющей погреш-
ности измерений, мкм
Предельно допустимая основная
погрешность (Δ) при измерении
на хромированных фотошаблонах, мкм
Дискрет выдачи результата измере-
ний, мкм
Время автоматического измерения
одного размера элемента, с 5
Максимальное визуальное увеличение
микроскопа, крат
Габаритные размеры, мм
оптико-механического
устройства
устройства управления
стола оператора
Масса, кг

Объекты измерения — стеклянные фотошаблоны с размерами от 102×102 до 178×178 мм и полупроводниковые пластины диаметром 60-150 мм.

Установка позволяет существенно повысить производительность, достоверность и точность контроля и освобождает оператора от утомительной процедуры точной фокусировки и поиска контролируемых элементов.

Статья поступила 24 июля 1989 г.

УДК 621.3.049.77.002.56

КОНТАКТНЫЕ УСТРОЙСТВА УКФ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ИСПЫТАНИЙ ИС НА ПЛАСТИНЕ

В.Н.Богданов, П.В.Боянков, О.И.Гунич

Экономическая целесообразность высокотемпературных испытаний ИС на пластине подтверждена рядом исследований [1, 2]. Специальное зондовое оборудование для работы в условиях повышенных температур оснащено универсальными контактными устройствами с числом зондов не более 48. Многозондовые контактные устройства с фиксированным расположением зондов (УКФ) [3], обеспечивающие контроль ИС с большим числом выводов, предназначены для работы только в нормальных условиях. Поэтому разработка термостабильных УКФ для контроля ИС с числом выводов не менее 130 весьма актуальна. Из анализа экспериментальных дан-

35

Рис. 1. Паяный вариант термостабильного контактного устройства

Рис. 2. Зонды паяного варианта (слева зондодержатель из ситалла, справа — из алюмокерамики)

ных следует, что фиксация зондов в термостабильных УКФ может осуществляться как пайкой, так и с помощью эпоксидного компаунда. Для подобных УКФ характерно широкое использование конструкционных материалов с повышенной термостойкостью и минимальным коэффициентом теплового линейного расширения.

УКФ в паяном варианте (рис. 1) состоит из печатной платы с армирую-

Рис. 3. Клееный вариант термостабильного контактного устройства: *a* – с патрубком между платой и армирующим диском, *б* – с пат- уубком, установленным непосредственно на плату

щим диском и контактов, припаянных к ней в соответствии с топологией контролируемого кристалла. В свою очередь каждый контакт состоит из диэлектрического зондодержателя и стандартного вольфрамового зонда (рис. 2). При этом армирующий диск изготавливается из сплава с малым коэффициентом линейного расширения. Печатная плата и зондодержатели изготавливаются из алюмокерамики, поскольку механическая прочность зондодержателей из ситалла (см. рис. 2) недостаточна.

УКФ в клеевом варианте (рис. 3) также содержит плату и армирующий диск, на котором с помощью прижимов закреплена зондовая головка, состоящая

из несущего и верхнего колец и стандартных вольфрамовых зондов, зафиксированных на несущем кольце с помощью специального компаунда. Концентрично зондовой головке расположен кольцевой патрубок с отверстиями, предназначенный для принудительного охлаждения контактного устройства сжатым воздухом и соединяющийся с пневмосистемой зондовой установки. Патрубок может устанавливаться между платой и армирующим диском (см. рис. 3, а) или непосредственно на плату (см. рис. 3, б). Как и в случае паяного варианта УКФ, армирующий диск изготавливается из сплава с малым коэффициентом линейного расширения, а верхнее и несущее кольца — из алюмокерамики.

Испытания образцов данных конструкций, проведенные на зондовом оборудовании при установившейся температуре 150°С, выявили преимущество клеевого варианта УКФ с патрубком, установленным непосредственно на плату (см. рис. 3, 6) как по стабильности положения зондов, так и по их расположению. При этом разновысотность зондов не превысила ± 20 мкм, а смещение их от номинального расположения составило менее 20 мкм.

литература

1. Буол Д. Зондовая установка для высокотемпературных испытаний ИС на пластине. — Пер. журн. США «Electronics», 1984, т. 57, № 9, с. 53-58.

2. Опыт эксплуатации предметного термостола в составе зондовой установки ЭМ-680/ В.Н.Богданов, П.В.Боянков, В.С.Кононов, П.П.Якимук.— Вопросы радиоэлектроники. Сер. Тепловые режимы, термостатирование и охлаждение радиоэлектронной аппаратуры, 1984, вып. 2, с. 113.

3. Контактные устройства с фиксированным расположением зондов на плате для контроля параметров ИС/ П.В.Боянков, С.А.Величко, В.С.Кононов и др.— Электронная промышленность, 1986, вып. 4, с. 77 – 78.

Статья поступила 24 июля 1989 года

УДК 621.791.052.08:620.179

ПРИБОР ДЛЯ АВТОМАТИЧЕСКОГО КОНТРОЛЯ КОНТАКТОВ ИС

Прибор предназначен для автоматического неразрушающего контроля микросварных соединений при изготовлении интегральных схем. Работает в комплексе с автоматическими и полуавтоматическими установками для микросварки.

Принцип работы основан на измерении сопротивления электрического контакта участка проводник—кристалл*. Контроль микросварных соединений и регистрация брака осуществляется в процессе сварки автоматически. В качестве регистрирующего элемента используется счетчик. В момент фиксации брака срабатывает световая и звуковая сигнализация. Одновременно вырабатывается сигнал «СТОП» для сварочной установки. Прибор может работать в двух режимах — внутреннего запуска (от встроенного генератора) и внешнего запуска (от сигнала сварочной установки). Качество контроля в обоих режимах идентично.

Техническая характеристика

Время контроля соединения,	M	c	•		•			•		•	•	•	•	•						•		•	•	• •	. 10	
Количество режимов работы											•		•												2	
Напряжение питания, В	•			•			•	•	•	•	•	•	•	•	•	•	•	•	•	•		2	20) -	10 15 [%]	,
Потребляемая мощность, В.		A																			(:	5() -	1	Гц) . 30	
Габаритные размеры, мм			•																26	50	×	2	20	0>	< 150	
Масса, кг	• •	•	•	•	•	•	• •							•	•		•	•	•		•	•	•		5	

А.П.Позний, Н.И.Рабцун

^{*} А.с. № 421152 (СССР). Устройство для контроля электрических контактов проводника в процессе сварки его с кристаллом/ А.Г.Шеревеня, В.Ф.Фролов, В.А.Дуболазов, А.С.Пешков.— Опубл. в Б.И., 1974, № 11.

УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ АКТИВАЦИИ КОНТАКТА для зондового контроля бис

В.Н.Богданов, П.В.Боянков, О.И.Гунич

При контроле БИС и СБИС значи тельное влияние на достоверность измерений оказывает сопротивление перехода «зонд — контактная площадка». Поскольку переходное сопротивление зависит от многих факторов (состояния контактных поверхностей, усилия контакта и др.), оно не имеет стабильного значения и при измерениях трудно учесть вносимую погрешность.

Поэтому требуется обеспечить стабильный минимальный уровень переходного сопротивления. Этого можно достичь путем создания двухпроводной связи контактных площадок с измерителем или применения новых контактных материалов [1]. Известны методы активации контакта, позволяющие до начала измерений уменьшить значение переходного сопротивления и повысить его стабильность. В результате всестороннего анализа наиболее эффективным и технически целесообразным был признан метод ультразвуковой активации.

Устройство, разработанное на базе предметного стола серийных зондовых установок, обеспечивает наложение импульса ультразвуковых колебаний непосредственно на контролируемую полупроводниковую пластину перед началом измерений.

В качестве источника ультразвуковых колебаний использовались пьезокера-

мические элементы в виде плоских колец. Для возбуждения колебаний этих элементов применен ультразвуковой генератор, формирующий сигналы напряжением 1,5-115 В и частотой 38,1-56.7 кГц, которые задаются с помощью программатора.

В результате комплексных исследований метода контактирования с применением разработанного устройства определены оптимальные режимы зондового контроля БИС, обеспечивающие минимальные режимы зондового контроля БИС, обеспечивающие минимальные размеры отпечатков при отсутствии «проколов» [2].

Применение устройства ультразву-ковой активации обеспечило снижение переходного сопротивления до стабиль-

ного уровня не более 0,3 Ом и таким образом значительно повысило достоверность зондового контроля БИС. В результате исключены случаи нарушения контакта и обеспечена непрерывная работа зондовой установки в течение смены без проведения профилактических мероприятий по очистке зондов. Устройство активации введено в состав зондового автомата ЭМ-690А.

литература

1. Контактные зонды из упорядоченного сплава/ П.В.Боянков, В.И.Кандыбин, А.Т.Косилов, А.В.Ярош.— Электронная промышленность, 1986, вып. 8, с. 30. 2. О н е г и н Е.Е. Точное машинострое-

ние для микроэлектроники. – М.: Радио

и связь, 1986. — 53 с.

Статья поступила 24 июля 1989 г.

ВНИМАНИЮ РУКОВОДИТЕЛЕЙ __ ПРЕДПРИЯТИЙ И ОРГАНИЗАЦИЙ

Производственное объединение «ЭЛТО» предлагает на договорных началах услуги в области испытаний технической продукции на воздействие различных факторов внешней среды, включая факторы, соответствующие международным стандартам МЭК, ИСО, а также испытаний по определению урсвня индустриальных радиопомех.

Объединени<u>е</u> «ЭЛТО» обладает необходимым парком аттестованного испытательного оборудования, имеет значительный опыт и профессиональную подготовку по испытаниям технической продукции различного назначения (машиностроительной, радиотехнической, электротехнической и др.).

При необходимости, испытания могут проводиться под контролем Госстандарта.

Обращаться по адресу: 734020, г. Душанбе, ул. Ломоносова, 113/1, ПО «ЭЛТО». Телефон для справок: 35-98-12.

МАГНЕТРОННОЕ ВЫСОКОЧАСТОТ-НОЕ УСТРОЙСТВО УМВ-2,5

Предназначено для получения различных диэлектрических покрытий при изготовлении изделий микроэлектроники, радиотехники и товаров народного потребления. Используется в составе вакуумных установок.

Устройство включает в себя высокочастотный генератор, магнетрон, согласующее устройство с выносным блоком, блок управления магнетроном БУМ-15, блоки питания соленоидов БПС-15.

Магнетрон имеет коаксиальную конструкцию магнитной системы, собранной на основе электромагнитов, что позволяет, изменяя конфигурацию магнитного поля, повышать коэффициент использования материала распыляемой мишени.

Для согласования высокочастотного генератора с магнетроном используется согласующее устройство. Имеется возможность подачи напряжения смещения на подложку. Управление и контроль питания соленоидов, а также индикация проходящей мощности и напряжения смещения на мишени и подложке осуществляются с помощью блока управления.

Пост откачки СОВ.ВХП-300-003

Предназначен для высоковакуумной безмасляной откачки и поддержания рабочего давления с напуском рабочих газов в технологический объем.

Представляет собой единый компактный блок на электропневматической арматуре, управляемый микроконтроллером. Возможно ручное управление. Пределяное остаточное

не более 1· 10 ⁻⁴
. не более 6,65
не менее 300

Время непрерывной работы поста при давлении в диапазоне от

1. 10 ⁻⁴ до 5. 10 ⁻⁴ Па, ч	не менее 16
Напряжение питания, В	220/380 (50 Гц)
Потребляемая мощность кВ · А .	не более 5
Габаритные размеры, мм	900×700×975
Масса, кг	
Ориентировочная цена, руб	

В качестве основного средства высоковакуумной откачки использован турбомолекулярный насос 01АБ-1500-004.

Для обеспечения работы поста необходима подача водопроводной воды, сжатого воздуха, жидкого и газообразного азота.

Отечественных аналогов нет. Зарубежные высокочастотные магнетронные устройства выпускаются только в составе установок вакуумного напыления. По сравнению с устройствами, входящими в состав установок PUMA-500 фирмы Alcatel (Франция) и подобными, устройство УМВ-2,5 имеет преимущество, заключающееся в применении магнитной системы на электромагнитах со сканированием магнитного поля, что позволяет увеличить КПД использования мишени.

Обозначение изделий при заказе: ПАИМЗ.222.002 ТУ.

Обозначение изделия при заказе: ПАИМ2.309.004 ТУ.

Обращаться по адресу: 601100, г. Петушки Владимирской обл., завод «Токамак».

УСТРОЙСТВА КОНТРОЛЯ И ИНДИКАЦИИ ВАКУУМА

Предназначены для автоматизации вакуумных технологических установок производственного назначения. Датчики вакуума ДВТ-3/0-006 и ДВЭ-0/7-007, входящие в состав устройства, по показателям назначения соответствуют системе промышленных приборов и средств автоматизации ГСП по ГОСТ 23222-78 (раздел 2).

Устройство УКВ-3/7-001 выполняет контроль по четырем каналам давления в диапазоне от 0,1 до $1 \cdot 10^5$ Па и по одному каналу давления в диапазоне от $2 \cdot 10^{-7}$ до 1 Па; УКВ-3/0-002 — контроль по восьми каналам давления в диапазоне от 0,1 до $1 \cdot 10^5$ Па; УКВ-3/7-003 — контроль по четырем каналам давления в диапазоне от 0,1 до $1 \cdot 10^5$ Па и по двум каналам давления в диапазоне от $2 \cdot 10^{-7}$ до 1 Па. Выходные сигналы: аналоговое напряжение от 0 до 10 В по каждому каналу. Имеются блокировочные устройства (по два на каждый канал контроля).

Выход — транзисторный ключ с «открытым» коллектором.

Возможна коммутация силовых устройств при токе до 1 А восемью герконовыми реле с одной группой на переключение в каждом.

Напряжение питания — 220±22 В (50±1 Гц); потребляемая мощность — 150 В·А.

Цена устройства ~4500 руб. Возможна поставка отдельных блоков по специальным договорам. Обозначение изделия при заказе: ПАИМО.145.001 ТУ.

УСТАНОВКА КОНТРОЛЯ ГЕРМЕТИЧНОСТИ МИКРОСХЕМ УК.ГМ-1200-001

Предназначена для производственных испытаний на герметичность интегральных микросхем в корпусах различных типоразмеров, электровакуумных приборов и других изделий, имеющих герметизированный объем.

Работа установки основана на электронно-захватном методе, который по сравнению с распространенными жидкостным и масс-спектрометрическим методами позволяет с высокой достоверностью обнаруживать течи всех диапазонов за один этап измерений.

Установка не требует переналадки при контроле микросхем, опрессованных элегазом или негерметичных по воздуху.

В состав установки входят: стол, устройство проверки на герметичность, загрузочное и сортировочное устройства с мини-роботом, блок питания и управления установкой, размещенный в тумбе стола. Установка представляет собой полуавтомат, обслуживаемый одним оператором. Управление исполнительными устройствами осуществляется в автоматическом режиме от микропроцессора, входящего в состав блока. Зарубежных аналогов нет.

	Максимальные габаритные	
	размеры проверяемых	
	изделий, мм	
	Пределы отбраковки изделий при	
	использовании в качестве	
	пробного вещества элегаза	
	верхний предел, м ³ . Па/с	
	нижний предел течи, видимые нево-	
	оруженным глазом	
	Пределы отбраковки изделий при	
	использовании в качестве проб-	
	ного вещества воздуха	
	верхний предел, м ³ · Па/с·····7· 10 ⁻⁶	
	нижний предел течи, видимые не-	
	вооруженным глазом	
	Кинематическая производи-	
	тельность, проверок/ч	
	Расход газа-носителя, л/ч не более 200	
	Потребляемая мощность, кВт	
	Габаритные размеры, мм 1170 $ imes$ 690 $ imes$ 1025	
	Масса, кг	
	Ориентировочная цена установки, руб 17000	
-	· А.с. № 920420 (СССР), Полуавтомат для конт-	
p	оля герметичности газонаполненных изделий/	
A	.В. Демилов. В.В.Пименов. — Опубл. в Б.И., 1982.	

Обозначение установки при заказе: установка контроля герметичности УК.ГМ-1200-001 ПАИМ2.656.006 ТУ.

Обращаться по адресу: 601100, г. Петушки Владимирской обл., завод «Токамак».

Nº 14.

ИЗМЕРИТЕЛЬ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ

ПРЕДНАЗНАЧЕН ДЛЯ ИЗМЕРЕ-НИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ЖИДКИХ И ГАЗООБРАЗНЫХ СРЕДСТВ ИНТЕРФЕРЕНЦИОННЫМ СПОСОБОМ В НЕОГРАНИЧЕННОМ ДИАПАЗОНЕ ЗНАЧЕНИЙ.

Может быть использован во всех областях науки и техники, где требуются высокоточные измерения оптических свойств жидких и газообразных сред: в океанологии, медицине, фармакологии, химии, биологии, теплофизике и др.

ВЫСОКИЕ ТОЧНОСТЬ ИЗМЕРЕ-НИЙ И ПРОИЗВОДИТЕЛЬНОСТЬ ПОЗВОЛЯЮТ ЭФФЕКТИВНО ИС-ПОЛЬЗОВАТЬ ИЗМЕРИТЕЛЬ КАК РАБОЧЕЕ ИЛИ ЭТАЛОННОЕ СРЕД-СТВО.

В СОСТАВ ИЗМЕРИТЕЛЯ ВХОДЯТ: ЛАЗЕРНЫЙ ИСТОЧНИК, ИНТЕРФЕРЕНЦИОННЫЙ УЗЕЛ, БЛОК ОТКАЧКИ ВОЗДУХА, ЭЛЕКТРОННЫЙ БЛОК ОБРА-БОТКИ СИГНАЛОВ.

Неисключенная сист	гематичес-	
кая погрешность и:	змерений	3·10 ⁻⁸
Среднеквадратична	я погреш-	
ность результатов и	змерений	2.10-8
Общая потребляема	ая мощ-	
ность, кВт		1,0
Обращаться по адрес ул. К.Маркса, 65. НПО «,	су: 680037, г. Дальстандарт».	Хабаровск,
Тел. 39-17-62, Бондаренк	o A.H.	

ТОНКОПЛЕНОЧНЫЙ ЕМКОСТНЫЙ ПРЕОБРАЗОВАТЕЛЬ АКУСТИЧЕСКИХ СИГНАЛОВ

ПРЕДНАЗНАЧЕН ДЛЯ ПРЕЦИЗИОННОГО ИЗМЕРЕНИЯ ПАРАМЕТРОВ АКУСТИЧЕСКИХ СИГНАЛОВ.

ВЫСОКАЯ ТОЧНОСТЬ ИЗМЕРЕНИЙ ОБЕСПЕЧИВАЕТСЯ БЕСКОНТАКТНОСТЬЮ, ШИРОКОПОЛОСНОСТЬЮ И БОЛЬШОЙ ЧУВСТВИТЕЛЬНОСТЬЮ ИСПОЛЬЗУЕМОГО ПРЕОБРАЗОВАТЕЛЯ.

Основной элемент преобразователя электрод в виде полусферы из алюминиевого сплава, на который электрохимическим способом нанесена тонкая 20 мкм окисная пленка. Другим электродом служит исследуемый объект. Прибор прост в изготовлении и эксплуатации.

диапазон, м 5 · 10⁻¹²—1,6 · 10⁻⁷

Обращаться по адресу: 680037, г. Хабаровск, ул. К.Маркса, 65. НПО «Дальстандарт». Тел. 39-17-62, Луговой В.А.

Аналитическое приборостроение

УДК 621.385.833

ЛОКАЛЬНЫЕ МЕТОДЫ ДИАГНОСТИКИ В МИКРОЭЛЕКТРОНИКЕ

В.В.Аристов, д-р физ.-мат.наук, А.Е.Лукьянов, канд.физ.-мат.наук

Основная тенденция современной микроэлектрони ки - уменьшение размеров элементов микросхем до субмикронных масштабов, т.е. переход к наноэлектронике - структурам и элементам с размерами до единиц нанометров, в перспективе - до молекулярных размеров. С уменьшением размеров элементов ИС возрастают требования к однородности, качеству исходных материалов, пленок. Поэтому при изготовлении структур с заданным изменением состава, электрических свойств и геометрических размеров меняются и требования ко всем методам измерения различных свойств микроэлектронных приборов, особенно к методам измерения локальных параметров. Например, точность измерения линейных размеров элемента должна быть не хуже 10 нм (при размере элемента 0,1 мкм), нижний предел измерения концентрации примеси 10¹² ат/см³, относительная точность измерения градиентов напряжений - 10⁻⁶-10⁻⁷ с шагом 10 нм.

К настоящему времени разработаны разнообразные методы изучения микроструктуры, электрофизических и других локальных параметров полупроводниковых материалов, структур и приборов микроэлектроники. При обсуждении характеристик, достоинств и недостатков этих методов термин "локальность метода" часто истолковывается довольно неопределенно, в частности из-за различной разрешающей способности метода или реализующего метод прибора.

Обычно под "локальностью" понимают способность прибора (метода) изучать свойства образца в микрообъемах, т.е. локальность в большинстве случаев определяется разрешающей способностью прибора, которая очень редко бывает изотропной. Например, метод резерфордовского обратного рассеяния ионов [1] больших энергий (порядка 1 МэВ) обеспечивает разрешение по глубине зондируемого образца до 10 нм, но при этом первичный пучок ионов в стандартных приборах имеет диаметр порядка 1 мм. т.е. величина разрешения по исследуемой поверхности образца того же порядка, хотя созданы лабораторные установки с пучком, диаметр которого составляет доли микрона. Подобно неопределенности понятия "локальность" не существует четкого определения и "чувствительности метода". Предельная чувствительность любого метода локальных измерений обусловлена квантовыми пределами, в частности соотношением неопределенности. В большинстве случаев, однако, предел чувствительности обусловлен более жесткими ограничениями, связанными со свойствами анализируемого образца, чаще всего с радиационной стойкостью.

Например, известный метод оже-электронной микроскопии [2] обладает невысокой чувствительностью (на уровне 0,1— 1%), что связано с малым (порядка 10⁻²—10⁻³%) коэффициентом преобразова-

ния энергии падающих на образец электронов в сигнал оже-электронов. Повышение чувствительности связано с увеличением дозы облучения и ограничено допустимой радиационной нагрузкой на образец.

Вследствие сложных механизмов формирования видеосигналов (или просто регистрируемых сигналов в тех методах, где не формируется изображение объекта) разрешающая способность, т.е. локальность метода, как и его чувствительность, зависят не только от свойств и размеров зондирующего пучка частиц (фотонов), но и от параметров самого исследуемого образца. Наиболее наглядный пример — обычный рентгеновский микроанализ, локальность которого порядка 1 мкм³ для массивных образцов [3] (из-за больших размеров области генерации рентгеновских квантов), но для тонкопленочных образцов в плоскости, перпендикулярной первичному пучку электронов, разрешающая способность может быть доведена до десятков нанометров.

Разрешающая способность метода локальной катодолюминесценции в растровом электронном микроскопе [4] также определяется главным образом не размерами электронного зонда и даже не "размывающим" влиянием диффузии неосновных неравновесных носителей заряда, обеспечивающих излучательную рекомбинацию, а скоростью поверхностной рекомбинации и степенью поглощения излучения в образце, причем можно в режиме катодолюминесценции получить разрешение лучше предельного разрешения обычного оптического микроскопа.

Развитие современных методов диагностики локальных параметров стимулирует поиск все более сложных, часто многоступенчатых физических механизмов формирования сигнала, несущих полезную информацию из микрообъемов образца, на пути разработки новых и совершенствования известных методов. Рассмотрим некоторые из них.

Метод растровой электронной термоакустической микроскопии (РЭТАМ) разработан в 80-х годах. Пучок первичных электронов РЭМ, модулированный по плотности, генерирует в образце быстрозатухающие тепловые волны, которые в свою очередь возбуждают акустические волны, переносящие информацию о дефектах в приповерхностной области образца через весь его объем и регистрируемые пьезодатчиком на тыльной поверхности [5, 6]. Разрешение РЭТАМ определяет в основном характерная длина затухания тепловой волны, т.е. величина порядка единиц—де сятков микрон, а не длина акустической волны (порядка миллиметра).

РЭТАМ уже довольно успешно применяется для исследования полупроводниковых приборов и микросхем, поиска разнообразных дефектов в приповерхностной зоне образца: микротрещин, дефектов диффузии, нарушений микроструктуры и т. д., хотя многие аспекты механизма формирования контраста изображений (особенно изображений электрически активных неоднородностей *p*-*n*-переходов и т. п.) еще не ясны, теория метода только создается.

Отражательная электронная микроскопия, в которой пучок электронов падает под малым углом скольжения на исследуемую поверхность, в отличие от РЭТАМ, известна более 50 лет, однако только в последнее десятилетие начинает использоваться в сверхвысоковакуумных приборах [7], в том числе комбинированных. Методом растровой отражательной микроскопии получены изображения моноатомных ступенек [8].

Растровая оптическая микроскопия со сканированием светового зонда используется в новом качестве, например для наблюдений наведенного тока. Недавно показано [9], что при сильном диафрагмировании, используя опыт сканирующей туннельной микроскопии, можно получить разрешение до десятка нанометров, что значительно лучше известного дифракционного предела (порядка длины волны, т.е. доли микрона). Это открывает новые перспективы применения оптических методов и в микроэлектронике.

Рентгеновская микроскопия с неподвижным широким или сканирующим узким рентгеновским пучком [10] обеспечивает в настоящее время разрешение вплоть до 10 нм при большой проникающей способности, не достижимой при просвечивании электронным пучком. В перспективе — использование рентгеновских лазеров, рентгеновская голография и разрешение на уровне лучших электронных микроскопов.

С переходом в субмикронную область, к многослойным БИС для тестирования нужны не только электронно-лучевые тестеры (приборы с разрешением порядка 10 нм при ускоряющих напряжениях порядка 1 кВ) с малой глубиной проникновения зондирующего электронного пучка, но и другие приборы и методы, т.е. необходим целый комплекс новых приборов и методов исследования локальных параметров.

Следует иметь в виду, что многие достаточно хорошо разработанные методы исследований локальных характеристик твердых тел являются разрушающими, т.е. при подготовке или в процессе исследований структура или свойства образца необратимо изменяются. Например, просвечивающая электронная микроскопия, обеспечивающая достаточно высокую локальность (иногда лучше 0,2 нм), в большинстве случаев требует специального приготовления тонких образцов (обычно толщиной менее 1 мкм), т.е. разрушения исходной структуры толстого объекта. Даже очень дорогие сверхвысоковольтные приборы позволяют изучать образцы толщиной примерно до 10 мкм.

Уровень требований субмикронной микроэлектроники к методам локальной диагностики весьма высок, и в то же время развитие технологии производства микросхем позволяет использовать новые технологические приемы для совершенствования этих методов. Например, создание зонных пластинок для линз рентгеновских микроскопов, микродиафрагм для оптических микроскопов сверхвысокого разрешения, микропружин сканирующей атомно-силовой микроскопии и т. п. были бы невозможны без новой разрабатываемой технологии.

Метод спектроскопии энергетических потерь электронов, т.е. анализ спектров потерь энергии электронов, прошедших определенный участок тонкопленочного образца в просвечивающей или в растровой просвечивающей электронной микроскопии [11], позволяет определять массу до 10^{-20} г, обнаруживать наличие химических элементов с $Z \ge 3$ и концентраци-

ями до 0,1% в микрообластях с размерами менее 100 нм. При протонном микрозондовом анализе [12] минимальная детектируемая концентрация составляет 10⁻⁶ и детектируемая масса — 10⁻¹⁸ при немного худшей локальности, т.е. можно проводить не только химический, но и изотопный анализ.

Атомно-зондовая микроскопия (разновидность полевой ионной или автоионной микроскопии) дает предельную локальность — можно обнаружить на полевом ионном изображении отдельный атом и затем, применяя полевое испарение и масс-спектрометрический анализ, определить массу этого атома [13]. Атомно-зондовая микроскопия уже применяется в исследованиях некоторых полупроводников.

Сканирующая туннельная микроскопия (СТМ), в которой регистрируется туннельный ток между иглой и образцом (иногда между одиночным атомом на вершине иглы и образцом), обеспечивает получение наиболее высоких результатов при определении величины анализируемого объема: разрешение "по высоте" у СТМ достигает 1 нм, а "в плоскости" – до 0,1 нм, т.е. анализируется объем порядка 0,01 Å³ [14].

Сканирующая атомно-силовая микроскопия, в которой регистрируются силы взаимодействия между иглой, закрепленной на микрокронштейне, и образцом (постоянный туннельный ток поддерживается с помощью обратной связи), позволяет измерять малые — менее 1 нН — локальные силы взаимодействия иглы с образцами полупроводников и диэлектриков [15], получить сведения о структуре поверхности. Создаются разнообразные комбинированные приборы, в том числе сочетающие достоинства СТМ с оже-микроскопией [16].

Разрабатываются новые, порой оригинальные микроскопические методы, которые могут успешно использоваться и в микроэлектронике. Приведем несколько примеров.

Нейтронный микроскоп, основанный на использовании пучков ультрахолодных (скорости порядка нескольких метров в секунду) нейтронов, обеспечивает разрешение лучше 50 мкм. Предложен проект прибора с разрешением лучше 0,3 мкм [17].

Позитронный микроскоп, работающий на принципе замедления позитронов из радиоактивных ядер до энергий порядка десятка миллиэлектронвольт в материале с отрицательной работой выхода и последующего их ускорения и фокусирования в вакууме, уже дает разрешение около 5 нм, в перспективе — до 1 нм [18].

Спин-поляризованная микроскопия, в том числе растровая и сканирующая туннельная [19], регистрирующая изменение поляризации спина электронов, интенсивно развивается в настоящее время.

Метод фото- и джоулевой микроскопии [20], а котором используется лазерная гетеродинная интерферометрия (геометрическое разрешение лучше 1 мкм), дает очень высокую чувствительность при измерении амплитуды малых переменных смещений (до 0,01 пм) и регистрации изменений локальной проводимости. Позволяет обнаружить область имплантации кремния в кремний даже после отжига, что пока не удается достичь другими методами.

Совершенствуются и усложняются способы обработки сигналов и изображений. Широкое распространение в микроскопии получили способы томографирования для изучения внутренней структуры, свойств микрообъемов, в частности томографическая реконструкция в РЭМ [21], в рентгеновских, инфракрасных, акустических и других микроскопах. Для решения обратных задач реконструкции привлекаются самые современные математические методы.

По-прежнему основными являются методы растровой электронной микроскопии с регистрацией сигналов вторичных, отраженных, поглощенных, ожеэлектронов, наведенного тока и проводимости, катодолюминесценции, рентгеновского излучения, сканирующей спектроскопии глубоких уровней и других сигналов. С помощью РЭМ можно измерять рельеф поверхности образца (стереоскопическая микроскопия), концентрации самых разнообразных дефектов, электрически активных примесей вплоть до 10^{12} ат/см³, вариации локального потенциала до 1 мВ и менее (даже на пассивированных микросхемах).

Появились новые способы наблюдения полупроводников в РЭМ: метод индукционно-зарядовой э.д.с. [22], в котором регистрируется емкостной сигнал на небольшом электроде над образцом, метод детектирования вариации СВЧ сигнала в резонаторе со щелью, над которой расположен зондируемый пучком РЭМ образец [23]. Эти методы позволяют визуализировать и изучать разнообразные дефекты в полупроводниковых материалах и приборах.

Совершенствуются и традиционные методы РЭМ, например способ наведенного тока. Наряду с развитием микротомографии [24] можно и в стандартном режиме регистрации сигнала наведенного тока резко улучшить чувствительность усовершенствованием методик приготовления образцов: ионное травление вместо химического, переводящего в раствор атомы и комплексы металлов (что приводит к потере информации о реальной, электрически активной структуре полупроводника), дает после нанесения барьера Шотки контраст изображения дефектов и слоистой структуры до 50-90%, при обычных методах - 1-5% [25, 26]. Благодаря повышению чувствительности можно обнаружить в кристаллах кремния электрическую активность большинства примесных и структурных микродефектов, в том числе даже крупномасштабных, не выявлявшихся ранее.

По данным исследований, разрешение РЭМ и при малых ускоряющих напряжениях можно довести до единиц, а иногда долей нанометров: при 5 кВ можно получить 0,5 нм [27], даже при такой малой энергии, как 2,5 эВ, достижимо разрешение 5 нм [28]. Однако фактически достижимое разрешение, как было указано выше, зависит от размеров области генерации регистрируемого сигнала. Если создана надежная модель механизма формирования сигнала, выявлены все существенные связи между особенностями детектируемого сигнала и микроструктурами или микродефектами образца, то можно применить математические методы для решения обратных задач: восстановления формы, размеров, глубины расположения различных мик ронеоднородностей в исследуемом образце, выяснения природы микродефектов, измерения субмикронных элементов структуры

Не исчерпаны возможности упрощения конструкции РЭМ. Интересные перспективы открывает модернизация сканирующего туннельного микроскопа с возвращением от туннельной к полевой электронной эмиссии. Можно сконструировать очень простой безлинзовый РЭМ с иглой-эмиттером на расстоянии несколько микрон от образца, для перемещения использовать пьезоэлектрические сканнеры. Разрешение такого РЭМ около 3 нм при энергии электронов всего лишь 15 эВ [29].

Нужно отметить еще одну особенность современного развития методов локальной диагностики: многие из них, помимо обычной диагностики или дефектоскопии, используются и в технологических процессах. Не говоря уже об электронной и ионной литографии, которые развились на базе растровой электронной и ионной микроскопии [30], СТМ тоже опробован для записи на полупроводниковых подложках линий с шириной до 10 нм [31]. Возможно, большие перспективы и у СТМ с жидкокристаллическим ионным источником [32].

Перечень и краткая характеристика основных методов исследования приборов и структур микроэлектроники (за исключением сканирующей туннельной микроскопии) приведены в [33].

ЛИТЕРАТУРА

1. Методы анализа на пучках заряженных частиц/А.А.Ключников, Н.Н.Пучеров, Т.Д.Чеснокова, В.Н.Щербин. – Киев: Наукова Думка. 1987.— 152 с.

2. Анализ поверхности методами оже- и рентгеновской фотоэлектронной спектроскопии/Под ред. Д.Бриггса и М.П.Сиха.-M.: Мир, 1987.— 600 с.

3. Гоулдстейн Дж. и др. Растровая электронная мик

3. Гоуулдстейн Аж. и др. гастровая электронная микроскопия и рентгеновский микроанализ. — М.: Мир, 1984. Кн. 1 и 2. 4. Гареева А.Р., Петров В.И., Чи жов Г.А. Зависимость пространственного разрешения в режиме локальной катодолюминесценции в растровом электронном микроскопе от значений электро рофизических параметров образца. — Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия, 1989, т. 30, № 1, с. 23—28. 5. R o s e n c w a i g A. Depth profiling of integrated circuits with

thermal wave electron microscopy.— Electronics Let., 1980, vol. 16, N 24, p. 928—930.

6. Р а у Э.И. Растровая электронная термоакустическая микроскопия твердотельных структур. Заводская лаборатория, 1987,

CKOININ TREPORTED HAN CTPYKIP. SABOLCKAN Subopartophin, 1967, 7. 53, № 10, с. 31-38.
7. Y a g i K a t s u m i c h i. Reflection electron microscopy. J. Appl. Crystallogr., 1987, vol. 20, N 3, p. 147-160.
8. M i l n R.H. Surface steps imaged by secondary electrons. —

8. M 1 n K.H. Surface steps inaged by secondary electrons.
9. Du r i ng U., P o h 1 D., R o h n e r F. Near-field optical scanning microscopy with tunnel-distance regulation.— IBM J. Res. and Dev., 1986, vol. 30, N 5, p. 478—483.

10. Рентгеновская оптика и микроскопия/Под ред. Г.Шмаля, Д.Рудольфа.— М.: Мир, 1987.— 464 с.

Д. Рудольфа.— М.: мир, 1907.— 404 С. 11. Рехнер В., Шнайдер Р. Некоторые вопросы спект-роскопии энергетических потерь в просвечивающей электронной микроскопии.— Поверхность. Физика, химия, механика, 1987, № 10, c. 43-51.

12. No b l i n g R. Analytical possibilities of high energy proton microprobes.— J. Electron Microscopy, 1986, vol. 35.— Suppl. 1, N 1, p. 601-602.

13. H r e n J.J., S h e d d G. Field electron emission, the atom probe and scanning tunneling spectroscopy. Ultramicroscopy, 1988, vol. 24, N 2-3, p. 169–180.

14. Маслова Н.С., Панов В.И. Сканирующая туннель-ная микроскопия атомной структуры, электронных свойств и по-верхностных химических реакций. — УФН, 1989, т. 157, вып. 1, c. 185-195.

15. Atomic resolution with atomic force microscope/G.Binning, Gerber, E.Stoll et al.— Europhys. Let., 1987, vol. 3, N 12, Ch

16. R e i h l B., G i m z e w s k i J.K. Field emission scanning Auger microscope (FESAM).— Surface Sci., 1987, vol. 189, N 1-3, p. 36-43.

17. Стрепетов А.Н., Франк А.И. Зеркальный нейтрон-

17. Стрепетов А.Н., Франк А.И. Зеркальный нейтронный микроскоп с магнитной компенсацией гравитационных искажений. Журн. техн. физ., 1986, т. 56, № 9, с. 1775—1785. 18. Rich Arthur, Van House James. Physics in action.— Phys. Bull., 1988, vol. 39, N 8, p. 308. 19. Pierce Daniel T. Spin-polarized electron microscopy.— Physica Scripta, 1988, vol. 38, N 2, p. 291—296. 20. Martin Ives. Photo- and Joule-displacement microscopy.— Phys. Bull., 1987, vol. 38, N 4, p. 145—147. 21. Aristov V.V., Ushakov N.G., Zaitsev S.I. SEM-tomography.— J. Electron Microsc., 1986, vol. 35.— Suppl. N 1, p. 475—476. p. 475-476.

22. Визуализация приповерхностной микроструктуры полупроводниковых материалов методом индукционно-зарядовой ЭДС/ А.В.Гостев, Ю.С.Клейнфельд, ЭИ.Рау, В.А.Сурогина. — Поверхность.

А.Б. 1 остев, го.с. Клеинфельд, Зиггау, В.А.Суротина. — Поверхноств. Физика, химия, механика, 1987, № 5, с. 73 — 81. 23. Л у к ь я н о в А.Е., П а т р и н А.А., Я н ч е н к о А.М. Ви-зуализация рекомбинационной неоднородности полупроводниковых пластин в РЭМ с СВЧ-детектированием.— Письма в ЖТФ, 1989, т. 15, вып. 10, с. 31—33.

т. 15, вып. 10, с. 31—3.5. 24. Электронно-зондовая микротомография полупроводнико-вых структур в режиме наведенного тока/С.К.Лихарев, Э.И.Рау, В.П.Трифоненков, А.Г.Ягола.— ДАН СССР, 1989, т. 307, № 4. 25. Электрически активная структура V—G-областей кристал-лов кремния, полученных методом Чохральского/А.Н.Бузынин, Н.А.Бутылкина, А.Е.Лукьянов и др.— Известия АН СССР. Сер. физич., 1988, т. 52, № 7, с. 1387—1390.

26. А.с. № 1531766 (СССР). Способ выявления электрически активных неоднородностей полупроводников/А.Н.Бузынин, Н.А.Бу-тылкина, И.Б.Гричевский, А.Е.Лукьянов, В.М.Татаринцев.— Опубл. в

B.H., 1989, № 47.
27. Crewe Albert V. Is there a limit to the resolving power of the SEM?— J. Electron. Microsc., 1986, vol. 35.— Suppl. N 3, p. 2105-2108.

p. 2105—2108.
28. В a u e r E., T e l i e p s W. Low energy electron microscopy.— J. Electron. Microsc., 1986, vol. 35.— Suppl. N 1, p. 67—70.
29. G i m z e w s k i J i m. New fields for STMs.— Phys. World, 1989, vol. 2, N 8, p. 25—28.
30. Б р о у дай И., М е р е й Дж. Физические основы микротехнологии.— М.: Мир, 1985.
31. E r i c h s E.E., Y o o n S., De L o s a n n e A.L. Direct writing of 10 nm features with the scanning tunneling microscope —

writing of 10 nm features with the scanning tunneling microscope.-Appl. Phys. Let., 1988, vol. 53, N 23, p. 2287-2289.

32. BellA.E., RaoK., Swanson L.W. Scanning tunne-ling microscope liquid-metal ion source for microfabrication. J. Vac. Sci. Technol., 1988, vol. B6, N 1, p. 306-310.

33. Пролектования в в.М. Перспективы развития аналитического иборостроения. — Электронная промышленность, 1982, приборостроения. — вып. 10—11, с. 3—7.

Статья поступила 20 ноября 1989 г.

РАСТРОВАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ В ДИАГНОСТИКЕ СТРУКТУР МИКРОЭЛЕКТРОНИКИ

ФИЗИЧЕСКИЕ ОСНОВЫ ТРЕХМЕРНОГО НЕРАЗРУШАЮЩЕГО МЕТОДА ИССЛЕДОВАНИЯ МНОГОСЛОЙНЫХ СТРУКТУР В ОТРАЖЕННЫХ ЭЛЕКТРОНАХ РЭМ

д-р физ.-мат.наук В.В.Аристов, Н.Н.Дремова, С.К.Лихарев, канд.физ.-мат.наук, ст.науч.сотр. Э.И.Рау

Растровая электронная микроскопия остается основным диагностическим методом, который используется почти на всех этапах разработки и изготовления ИЭТ. РЭМ позволяет измерять поверхностные структуры с разрешением $2 \cdot 10^{-3} - 2 \cdot 10^{-2}$ мкм, наблюдать топографические и композиционные неоднородности с пространственным разрешением $5 \cdot 10^{-2}$ мкм, определять характеристики и дефекты ρ -*n*-переходов с локальностью $5 \cdot 10^{-2}$ мкм по глубине 1—2 мкм. Основными разновидностями метода РЭМ является электронвая микроскопия с регистрацией сигналов вторичных, отраженных, поглощенных электронов, катодолюминесценции, реµтгеновского излучения, а также сканирующая спектроскопия глубоких уровней.

Информационная глубина РЭМ в режиме отраженных электронов (ОЭ), т.е. расстояние от поверхности в глубину объекта, на котором еще возможно формирование картины в РЭМ, зависит от минимально обнаруживаемого контраста, от максимальной глубины выхода ОЭ и от различия коэффициентов обратного отражения электронов между структурами объекта. Эта величина для типичных условий работы РЭМ составляет 1—10 мкм, что вполне пригодно для диагностики трехмерных микросхем.

С развитием субмикронной технологии значение создания методов измерения с возможностью восстановления трехмерного распределения микроструктуры с высоким пространственным разрешением возрастает. Для создания модели формирования сигнала ОЭ, отвечающей поставленной задаче получения количественной информации о глубине залегания слоев и микронеоднородностей, необходимо получить экспериментальные данные о рассеянии электронов в веществе при различных ускоряющих напряжениях на модельных образцах, структура которых известна. Необходимо также рассмотреть обратную задачу: как по контрасту изображения методами реконструктивной вычислительной томографии восстановить любое сечение объемной структуры.

Измерение зависимости интенсивности сигнала обратнорассеянных электронов от ускоряющего напряжения проводилось в диапазоне 1—39 кэВ. Указаны оптимальные способы регистрации сигналов ОЭ и на их основе рассмотрена возможность томографической реконструкции.

В РЭМ в режиме ОЭ можно получать изображения глубинных слоев с латеральным разрешением лучше 1 мкм [1—3]. При восстановлении объемной микроструктуры целесообразно учитывать (и детектировать) только те обратнорассеянные элект-

роны, которые потеряли при движении внутри объекта малую часть своей энергии. Правомерность такого рассмотрения следует из того факта, что при сепарации ОЭ по энергиям и направлению удается получать повышенный контраст (в два раза по сравнению со случаем регистрации всего энергетического спектра) и улучшенное пространственное разрешение. Это объясняется тем, что, во-первых, наиболее существенное различие энергетического распределения ОЭ для элементов с различным атомным номером Z отмечается в диапазоне 0,5-0,95 Е₀ (Е₀ — энергия первичных электронов) и, во-вторых, область взаимодействия пучка с веществом, т.е. глубина выхода ОЭ и продольное расплывание, уменьшается при фильтрации электронов и детектировании только той доли ОЭ, которые имеют малые потери энергии.

Необходимо учитывать, что при взаимодействии электронов с твердым телом изменение направления движения электрона обусловливается в основном упругим рассеянием на ядрах атомов, в то время как изменение энергии происходит преимущественно за счет неупругого рассеяния на электронной оболочке атомов решетки. Поэтому изменения вектора скорости ОЭ по значению и направлению можно рассматривать независимо [4, 5].

Пусть электроны зонда с энергией E_0 бомбардируют поверхность объекта, испытывают отражение на глубине X и затем детектируются коллектором с малой входной апертурой v_g . На пути к коллектору ОЭ фильтруются по энергиям — с помощью электростатического или магнитного анализатора либо же детектируются энергодисперсионным датчиком, сигнал с которого поступает на многоканальный анализатор.

Для материалов с малыми атомными номерами $Z \leqslant 40$ и электронов, потерявших в объеме малую часть энергии $\Delta E \equiv E_0 - E << E_0$ с большой достоверностью можно считать, что электрон испытывает в материале только одно упругое рассеяние на большой угол («отражение»), до и после которого он испытывает большое число неупругих и упругих рассеяний на малые углы [6]. Поэтому для расчета сигнала ОЭ необходимо определить движение потока электронов до отражения, после отражения до выхода из объекта и произвести интегрирование ОЭ на детекторе.

Рассмотрим эти процессы последовательно. В приближении потерь (а электроны, удовлетворяющие этому приближению, можно «отсечь» с помощью энергодисперсионного анализатора) будем считать, что сечение упругого рассеяния не зависит от энергии частиц. В этом случае процесс многократных слабых отклонений электронов до отражения можно рассчитать в модели Мольер [7]. При этом можно показать, что для глубин, удовлетворяющих приближению малых потерь, средний квадрат угла отклонения электрона от первоначального направления <v²> равен

$$< v^2 > (X) \approx X/l_{\rm TP},$$
 (1)

где $l_{\tau p}$ — «транспортная длина» или длина диффузии. Кроме того, на этих глубинах $< v^2 > (X) << 1$.

Процесс отражения электронов с хорошей точностью описывается формулой экранированного рассеяния Резерфорда. Важным свойством такого рассеяния является то, что при рассеянии на углы $\sim \pi(1\pm0,2)$ наблюдается приб<u>лизительн</u>ая изотропность. Это позволяет при $\sqrt{\langle v^2 \rangle(X)} \leq 0, 2\pi$ заменить свертку «прямого» распределения отклоненных электронов по углам с функцией резерфордовского отражения просто функцией отражения. Кроме того, поскольку при движении отраженных электронов к поверхности для каждого из направлений, лежащих в интервале $\pi(1\pm0,2)$, результирующий разброс по углам будет порядка $\sqrt{\langle v^2 \rangle (X)}$ (если не считать эффекта малой разности хода, несущественного для таких углов), то можно и эту свертку заменить функцией отражения. Это будет правомерно, если входная апертура детектора лежит в интервале от $\sqrt{<v^2>(X)}$ до ~0,2л.

Отсюда следует, что основную роль в формировании сигнала ОЭ при сделанных предположениях играет процесс отражения электронов от различных глубинных слоев. Тогда получим

$$I_{O3}(E_0) = \int_{0}^{X_{max}} \omega_g(X, E_0) I(X, E_0) dX, \qquad (2)$$

где $\omega_g(X, E_0)$ — вероятность отражения на детектор (т.е. резерфордовского рассеяния на угол $\pi \pm v_g$).

Полагая $n_0(X)Z^2(X) \equiv n_0Z^2(1+\gamma(X))$, где n_0 — концентрация рассеивающих центров, и считая $\gamma(X) <<1$, получим $log = l^0og + l^1og$, где l^0og — поток ОЭ от однородного образца:

$$I^{1} \odot (E_{0}) = c_{1} I_{0}^{\chi_{max}} \gamma(X) K(X, E_{0}) dX,$$

$$c_{1} - \text{const.}$$

Здесь ядро процесса зондирования

 $K(X, E_0) = (1/E_0^2) \exp(-c_2(1/E_0^2)X),$

где ү(X) — функция, описывающая внутреннюю структуру объекта.

Рис. 4. Изображения кремниевой пластины с участками легирования на разную глубину фосфором и бором, снятые при ускоряющем напряжении 6 кэВ (a) и 15 кэВ (б)

Рис. 5. Изображение фрагмента микросхемы с двухуровневой металлизацией, снятое при ускоряющем напряжении 10 кэВ (*a*) и 26 кэВ (*б*)

Видно, что выражение I'оэ с ядром $K(X, E_0)$ представляет собой уравнение Фредгольма I рода, следовательно, задача определения $\gamma(X)$ по имеющемуся набору $Iоэ (E_0)$ (т.е. задача глубинной диагностики) является некорректно поставленной. Для ее решения подходит способ, основанный на методе регуляризации, описанном в [8].

Таким образом, набирая при различных E_0 массив значений сигнала ОЭ с помощью малоапертурного детектора и отсекая только те ОЭ, которые потеряли сравнительно мало энергии, можно с помощью компьютерной обработки этого массива восстановить в каждой точке поверхности слабонеоднородного объекта его глубинную структуру, т.е. решить задачу трехмерной глубинной диагностики.

Исследовались тестовые структуры — пластины кремния с нанесенными на них слоями меди различной толщины и покрыты сверху тонким слоем алюминия. Измеряемый контраст определялся как разность сигналов между областями, покрытыми только алюминием, и областями с промежуточным слоем меди (рис. 1). Такая конфигурация позволяла исключить влияние границы между двумя областями образца. Толщина термически напыленной медной полоски варьировалась в пределах от 0,05 до 0,2 мкм. После напыления меди термическим напылением на весь образец наносился слой алюминия толщиной 0,1—0,4 мкм.

Результаты исследований контраста этих тестовых структур, как функции ускоряющего напряжения РЭМ, т.е. энергии электронов Е₀ зондирующего пучка, приводятся на рис. 1—3. Из графиков видна общая тенденция — явная зависимость величины контраста от толщины каждого слоя и глубины его залегания. При увеличении энергии пучка электронов происходит сдвиг кривых в сторону более высоких энергий и их уширение с увеличением толщины верхних пленочных слоев (см. рис. 1). Заметный контраст появляется при одном определенном ускоряющем напряжении независимо от толщины слоя Си, а положение начального участка кривых определяется толщиной верхнего слоя Al (см. рис. 2). Все кривые имеют четко выраженный максимум, положение которого зависит от параметров как слоя Al, так и слоя Cu на Si, контраст от более глубоких слоев Си может быть большим по величине, чем от мелкозалегающих. На такой аномальный характер контраста было обращено внимание и в работах [9, 10].

Исследование многослойной структуры Cu—Al— —Cu—Si (см. рис. 3) показывает, что более глубоколежащий слой Cu также дает максимум контраста в определенном интервале энергии пучка и что в принципе возможно по сигналу ОЭ определять параметры нижележащих деталей многослойных структур. Например, из рис. 2 при наличии калибровочных кривых контраста *C* в зависимости от ускоряющего напряжения РЭМ *U* можно оценить толщину слоя Cu.

Качественно ход кривых, представленных на рис. 1—3, можно объяснить, исходя из результатов работ [1, 11]. Максимальная глубина выхода ОЭ, потерявших лишь незначительную долю энергии, приближенно равна половине глубины проникновения *R* электронного пучка в конденсированную среду. Контраст в ОЭ в РЭМ

$$C = \frac{I_{\rm A} - I_{\rm B}}{I_{\rm A} + I_{\rm B}} \approx (\eta_{\rm A} - \eta_{\rm B}) \exp(-\frac{8d}{R}),$$

где /а и /в — измененная интенсивность ОЭ в зондируемых точках образца А и В, па и пв — эффективный коэффициент отражения электронов в этих точках, d — толщина верхнего слоя. Из последнего соотношения видно, что величина контраста имеет максимум (при R=8d) и что чем больше d, тем контраст меньше, а максимум сдвигается по энергетической оси вправо (см. рис. 1—3).

На рис. 4, 5 приводятся примеры послойной визуализации изделий микроэлектроники методом вариации ускоряющего напряжения РЭМ и фильтрации ОЭ по энергиям. На снимках видна четкая дифференциация микроструктуры по глубине. Для их количественного описания требуется привлечение методов реконструктивной вычислительной томографии.

ЛИТЕРАТУРА

1. Seiler H. Secondary electron emission in the SEM.--J. Appl. Phys., 1983, vol. 54, N 11, p. R1--R17. 2. Филиппов М.Н., Спивак Г.В., Рау Э.И.

2. Филиппов М.Н., Спивак Г.В., Рау Э.И. Растровая электронная микроскопия объектов с пленочным покрытием.— Поверхность, 1982, № 12, с. 77—85.

3. Наблюдение объемных микронеоднородностей с помощью РЭМ/В.В.Аристов, Н.Н.Дремова, С.И.Зайцев и др.— ДАН СССР, 1988, т. 301, № 3, с. 611—614.

4. Бойко В.И., Евстигнев В.В. Введение в физику взаимодействия сильноточных пучков заряженных частиц с веществом.— М.: Энергоатомиздат, 1988, с. 136.

5. Калашников Н.П., Ремизович В.С., Рязанов М.И. Столкновения быстрых заряженных частиц в твердых телах. М.: Атомиздат, 1980, с. 272.

6. КалашниковН.П., Машинин В.А. Ктеории обратного рассеяния быстрых электронов от сплошной среды.— ЖЭТФ, 1970, т. 59, № 6, с. 2025—2034.

7. S c o t t W. The theory of small angle multiple scattering of fast charged particles.— Rev. Mod. Phys., 1964, vol. 35, N 2, p. 231-313.

8. Микротомография полупроводниковых структур в режиме наведенного тока/С.К.Лихарев, Э.И.Рау, В.П.Трифоненков, А.Г.Ягола.— ДАН СССР, 1989, т. 307, № 4, с. 840—845.

9. R e i m e r L. Quantative scanning electron microscopy oj surgaces.-- J. de Physique, 1984, c. 45, p. 2-29.

10. W e l l s O.C., S a v o y R., B a i l e y P. Backscattered electron imaging in SEM.-- Electron Beam Interaction with Solids, 1984, SEM inc., AMF O'Hare (Chicago), IL 60666, USA, p. 287--289.

11. N i e d r i g H. Electron backscattering from thin films.-- J. Appl. Phys., 1982, vol. 53, N 4, p. 15-49.

Статья поступила 7 июля 1989 г.

УДК 621.385.833.049.77

ОПТИМИЗАЦИЯ КОЛЛЕКТОРА-ЭНЕРГОАНАЛИЗАТОРА РЭМ И МЕТОДА ИЗМЕРЕНИЯ ПОТЕНЦИАЛЬНОГО РЕЛЬЕФА ТВЕРДОТЕЛЬНЫХ СТРУКТУР канд.физ.-мат.наук А.В.Гостев, канд.физ.-мат.наук, ст.науч.сотр. Э.И.Рау

Предлагаемая конструкция коллектора-анализатора найдет применение в электронно-зондовых тестерах, создаваемых на базе РЭМ, т.е. для бесконтактного измерения потенциального поля при функциональном контроле микросхем.

В настоящее время в связи с интенсивным развитием производства больших интегральных микросхем особую актуальность приобретает задача тестирования этих микросхем с помощью РЭМ в режиме потенциального контраста. При этом для обеспечения оперативности измерений к системам детектирования потенциального контраста предъявляются повышенные требования по быстродействию и эффективности регистрации сигнала [1—3].

В последние годы наибольшее распространение получили системы с аксиальной относительно электронного зонда симметрией, работа которых основана на регистрации и анализе по энергиям вторичных электронов. Сюда относятся коллекторыанализаторы с планарными сеточными электродами [2, 4, 5], а также анализаторы с продольным магнитным полем [6]. Коллекторы с сеточными электродами рассчитаны на использование серийного РЭМ, однако имеют ряд недостатков: низкую эффективность регистрации вторичных электронов (~25%); большой фон от третичных электронов, выбитых из сеточных электродов; недостаточную линейность в области измерения положительных потенциалов. Коллекторы с продольным магнитным полем обладают более приемлемыми параметрами, но требуют кардинальной переделки РЭМ, так как детектирование вторичных электронов в них осуществляется над объективной линзой [6].

Получение высоких эксплуатационных характеристик без переделки серийного РЭМ было реализовано в предлагаемой конструкции коллектора (рис. 1). Анализаторная часть состоит из «толстой» анализирующей диафрагмы, совмещенной с магнитной катушкой, ниже которой расположены вытягивающий электрод и модулятор. Отклоняющий цилиндрический электрод, на который подается отрицательное смещение, соединяет фильтрующую часть с элементом крепления, который ввинчивается в полюсный наконечник объективной линзы РЭМ. Таким образом, от типа используемого микроскопа зависит только конструкция элемента крепления и высота отклоняющего электрода.

Магнитное поле в такой системе выполняет двоякую роль — уменьшает линзовые эффекты, расширяя поле зрения, и повышает эффективность системы, удерживая низкоэнергетические вторичные электроны от захвата анализирующим электродом. Фильтрация вторичных электронов производится только по нормальной составляющей скорости. Таким образом, погружение электростатической линзы в магнитное поле способствует созданию светосильного высокоразрешающего энергоанализатора электронного потока.

Рис. 2. Топография (а) и потенциальный рельеф (б) фрагмента микросхемы

Рис. 3. Топографический (а) и потенциальный (б) контрасты на работающей микросхеме

Величина магнитного поля подбиралась на основе пробных экспериментов на РЭМ JSM-35CF и составляла 17 Гс. При этом увеличение эффективности детектирования вторичных электронов достигало 30-40% при 1 кВ и 80-100% при 20 кВ ускоряющего напряжения микроскопа. На поведение электронов первичного пучка столь слабое магнитное поле не влияло, астигматизм в экспериментах не наблюдался. Характеристики коллектораэнергоанализатора следующие: рабочее расстояние от объектива до образца — 35 мм; поле зрения — 3 мм в диаметре при расстоянии от образца до анализатора — 2 мм; напряженность вытягивающего поля 0,5 кВ/см при 4 мм и 1,5 кВ/см при 2 мм расстояния до образца; эффективность регистрации вторичных электронов 90%, вклад упругоотраженных электронов в суммарный сигнал менее 10% при 1 кВ; порог чувствительности системы 1 мВ при частоте 1 Гц, токе зонда 1 · 10⁻⁹ А, ускоряющем напряжении 1 кВ и отношении сигнал-шум равном 3, что соответствует фактору качества анализатора $[4] - 8 \cdot 10^{-9}$ В·А·с. Данная величина хорошо совпадает с расчетным значением, вычисленным в предположении пуассоновского характера шума, порождаемого детектируе-мыми вторичными электронами (6·2·10⁻⁹ B·A·c), а также с расчетным и экспериментальным значением, полученным в работе [6]. Для сравнения отметим, что в распространенном коллекторе-энергоанализаторе Фойербаума [4] с сеточными электродами минимальный детектируемый потенциал на образце в 1 мВ получается при ускоряющем напря-жении 10 кВ и токе зонда 5 · 10⁻⁹ А.

Для подавления влияния микрогеометрии и линеаризации потенциального контраста реализован следующий метод. На анализирующий электрод через разделительный трансформатор подается переменное синусоидальное напряжение (~10 В), которое приводит к широтно-импульсной модуляции выходного сигнала коллектора-энергоанализатора. Этот сигнал поступает от стандартного детектора РЭМ через разделительный конденсатор на диодный ограничитель, с выхода которого подается на интегрирующую цепь и на усилитель обратной связи. Использование широтно-импульсной модуляции в цепи обратной связи позволило существенно повысить линейность суммарной передаточной характеристики (до 1% в диапазоне изменения напряжения на образце ±7 В).

Эффективность отображения потенциального контраста демонстрируется на примере визуализации фрагмента кристалла операционного усилителя (рис. 2). При работе усилителя можно достаточно четко разделить изображения топографии (см. рис. 2,а) и потенциального контраста (см. рис. 2,6). При рабочих напряжениях на микросхеме вплоть до ±20 В искажения в линейности и ошибки измерений не превыщали 3%. На рис. 3, а, б приводится картина как статического, так и динамического потенциального контраста. Импульсные сигналы на микросхеме кодируются в виде черно-белых чередующихся полос, в то время как участки микросхемы под постоянным положительным напряжением отображаются темными фрагментами.

Таким образом, описанный коллектор-энергоанализатор может найти применение в электроннозондовых тестерах, создаваемых на базе РЭМ, т.е. для бесконтактного измерения потенциалов при функциональном контроле и анализе отказов микросхем.

литература

1. Многоцелевая коллекторная система для РЭМ/ В.Г.Дюков, Э.И.Рау, Г.В.Спивак, А.А.Соловьев.— 1974, № 5, с. 200—203. ПТЭ.

Методы измерения микропотенциалов с помощью РЭМ/Г.В.Спивак, Э.И.Рау, Н.М.Карелин, М.В.Назаров. 1978, т. 7, вып. 3, с. 212—227. 3. Feuerbaum H.-P. E-beam testing. – Proc. Int.

Conf. of Microlithography, Grenoble, 1982, p. 177.

4. Menzel E., Buchanan R. Some recent developments in low voltage E-beam testing of IC.-Journal

of microscopy, 1985, vol. 140, N 3, p. 331–349. 5. Stroboscopic testing of LST with low voltage SEM/ H.Todokoro, S.Yoneda, K.Yamaguchi et al.– Journal of microscopy, 1985, vol. 140, N 3, p. 313.

6. ГостевА.В., Рау Э.И., Спивак Г.В. Получение и обработка изображений комплексом РЭМ-микро-ЭВМ при автоматической дефектоскопии интегральных микросхем. — Изв. АН СССР. Сер. физ., 1984, т. 48, № 2, c. 299-305.

Статья поступила 17 июля 1989 г.

УДК 620.187

РАСТРОВАЯ ЭЛЕКТРОННО-АКУСТИЧЕСКАЯ МИКРОСКОПИЯ В МИКРОЭЛЕКТРОНИКЕ

науч.сотр. В.Л.Гуртовой, канд.физ.-мат.наук, ст.науч.сотр. В.Г.Еременко

Растровая электронно-акустическая микроскопия (РЭАМ) — новый метод визуализации тепловых неоднородностей и дефектов в материалах, реализуемый на основе техники РЭМ. Метод позволяет осуществлять неразрушающую и бесконтактную диагностику структуры поверхности и приповерхностных слоев различных полупроводниковых материалов и элементов с разрешением до 1 мкм.

Появившиеся в последнее десятилетие новые эффективные РЭМ-методы исследований полупроводников основаны на использовании целого ряда физических эффектов взаимодействия сфокусированного пучка электронов с полупроводниковым материалом. Однако в большинстве своем данные методы, такие как сканирующая оже-микроскопия, EBIC, SDLTS, **OBIC**, катодолюминесценция и другие позволяют получать информацию об электронной структуре и электрических и оптических свойствах микрообластей полупроводниковых кристаллов. В то же время для полупроводниковых материалов и микро-электронных структур необходимо знание на микроскопическом уровне

изменений таких важных физических свойств, как тепловые и упругие. Это определяется прежде всего тем, что полупроводниковый материал содержит различные неоднородности и дефекты, свойства которых могут сильно изменяться. В частности, изменяется электрическая или оптическая активность дефектов, что в результате может сделать невозможным их обнаружение в режиме EBIC, SDLTS или катодолюминесценции. При этом данные дефекты или их скопления могут проявлять себя как тепловые неоднородности либо как упругие при изменении упругих констант (например. образовании новой фазы). В полупроводниковых пластинах после промежуточных операций или готовых приборах, являющихся гетероструктурами, помимо упомянутых тепловых микронеоднородностей, существуют скрытые под металлизацией или диэлектриком диффузионные и имплантированные области, активные элементы ИС, поликристаллические и эпитаксиальные слои и участки металлизации. Сами области и контакты между ними также являются тепловыми неоднородностями, как правило, находящимися под поверхностью и содержащими дефекты (например, дефекты адгезии в структуре металл полупроводник).

Потенциально высокими возможностями для решения вопросов визуализации тепловых микронеоднородностей и их диагностики обладает предложенный сравнительно недавно [1, 2] метод РЭАМ, реализуемый на основе традиционной техники РЭМ.

Физические основы метода РЭАМ. Сканирующий по поверхности объекта сфокусированный электронный пучок модулируется по интенсивности в диапазоне частот 0,01—10 МГц. Периодический нагрев локальной области у поверхности образца, возникающий из-за поглощения энергии электронов, является источником тепловых волн, распространяющихся вглубь и экспоненциально затухающих на длине диффузии тепла

$$d\tau = \lambda \tau / 2\pi = (2k/pc \cdot \omega)^{1/2}$$

где k — теплопроводность; p — плотность; с — теплоемкость; $\omega=2\pi f$ угловая частота; $\lambda au - длина тепловой$ волны. Тепловые волны могут отражаться и рассеиваться на тепловых неоднородностях и дефектах, создавая, таким образом, условия для их визуализации. В приближении одномерной тепловой модели [3] dт определяет эффективный размер области у поверхности, в которой происходит рассеяние тепловых волн, и разрешение метода. Регистрация тепловых волн может быть осуществлена путем измерений различными методами локальных изменений температуры поверхности. Другой способ детектирования тепловых волн состоит в регистрации термоакустического сигнала, возникающего в материале с ненулевым коэффициентом теплового расширения, с помощью пьезоэлектрического преобразователя, находящегося в акустическом контакте с объектом. Глубина визуализации dт может быть легко изменена в широких пределах изменением угловой частоты модуляции ω. Характерные значения dт для некоторых материалов даны в таблице.

сивности электронного пучка [4-6] осуществляется с помощью емкостного модулятора, которым оснащены некоторые приборы. Однако для этих целей применима любая конструкция модулятора.

В качестве детектора термоакустического сигнала, как правило, используется пьезоэлектрический преобразователь из ЦТС-керамики в виде диска диаметром 5-10 мм, толщиной 0,2-0,5 мм, который крепится к нижней стороне образца с помощью тонкого слоя проводящего клея или пайкой легкоплавким припоем. Структура образец-детектор помещается в специальный держатель, обеспечивающий экранирование нижнего (сигнального) электрода преобразователя и сигнального кабеля. Прием и усиление электрического сигнала от преобразователя может осуществляться селективным усилителем либо двухканальным синхронным детектором (рис. 1). В первом случае возможна регистрация только амплитуды ЭА сигнала, а следовательно, запись только амплитудного ЭА изображения. Использование синхронного детектора расширяет возможности метода, обеспечивая получение нового типа изображений — фазового. Однако в этом случае аппаратурные ограничения позволяют регистрировать фазовые ЭA изображения в полосе частот AO 200 кГп.

Модулятор управляется однополярными прямоугольными импульсами частотой до 10 МГц, которые подаются от задающего генератора (рис. 1), при этом выход второго канала используется в качестве опорного напряжения для синхронного усилителя. При подаче в опорный канал синхронного усилителя четных гармоник сигнала, т.е. 2ю, 4ю и т.д., или настройке на эти частоты селективного вольтметра возможно получение нелинейных ЭА изображений. В конечном итоге изучаемая область объекта может быть выявлена на нескольких ЭА изображениях различной природы, что значительно расширяет аналитические и диагностические возможности метода РЭАМ.

На практике для получения максимальной амплитуды ЭА сигнала и отношения сигнал—шум все ЭА измерения проводятся преимущественно

Материал	Al	Au	Si	SiO ₂	GaAs
dт при 100 кГц (мкм)	17,5	20,1	17,1	1,4	8,8
dт при 1 МГц (мкм)	5,5	6,4	5,4	0,4	2,8

Особенностью метода РЭАМ является возможность его применения для визуализации локальных изменений практически любых физических свойств различных материалов, так как в той или иной степени они вызывают изменение локальных тепловых или упругих характеристик объекта.

Особенности приема и записи электронно-акустического (ЭА) сигнала. Функциональная схема микроскопа. РЭАМ-метод может быть реализован с использованием любого серийного РЭМ. Модуляция интенна резонансных частотах колебаний структуры образец—преобразователь, предварительно определяемых по частотной зависимости полного импеданса [7].

Некоторые примеры РЭАМ визуализации неоднородностей в структурах на основе Si и GaAs. Одним из достоинств РЭАМ-метода является его способность выявить электрически активные области в полупроводниках, без осуществления каких-либо электрических контактов с этими областями. Пример ЭА изображения элемента транзистора показан на рис. 2. Видно, что *p*-*n*-переход эмиттер-база, выходящий на поверхность, имеет вид (в отличие от EBIV-изображения перехода) узкой темной линии. Широкая темная полоса является изображением части перехода база-коллектор, находящегося на глубине 7 мкм.

Метод РЭАМ позволяет, по-видимому, решить проблему визуализации и контроля дефектности в интерфейсе наиболее распространенной структуры в микроэлектронике металлполупроводник. Характер изображения дефектов адгезии Au-металлизации эмиттера кремниевого транзистора виден на рис. З. Электрод базы имеет однородный контраст, в то же время эмиттерный контакт имеет характерную пятнистую структуру на ЭА изображении. Причиной возникновения такого контраста, а также темного контраста на краю металлизации является наличие дефектов адгезии в Si- Au структуре (рис. 3, а, б).

Рис. 2. Изображение фрагмента Si транзистора КТ803: a — вторичные электроңы (ВЭ); б — ЭА изображение (ЭАИ), частота 174 кГц. Уровень легирования эмиттера ~ 10⁴⁰ см⁻³, базы — ~ 10¹⁶ см⁻³; толщина Au металлизации 0,5 мкм

Рис. 3. ЭА изображение дефектов адгезии в структуре Si-Au: а — ВЭ: б — ЭАИ: частота 124 кГц; в — ЭАИ, 203,4 кГц; г — ЭАИ, 492 кГц

Из-за локальных изменений теплопроводности в дефектных местах области со слабой адгезией имеют темный контраст и наоборот. Появлениє более тонкой структуры на ЭА изображениях (рис. 3, в, г) при увеличении частоты свидетельствует об увеличении разрешения, причем в большей степени, чем это предсказывается теорией термоакустической генерации звука [3].

Следует отметить, что визуализация дефектов адгезии возможна также с помощью сканирующего акустического микроскопа. Однако данным методом были выявлены, в основном, макроскопические дефектные области интерфейса в многослойных структурах в виде расслоений и пустот [8]. В нашем случае наблюдаемые микродефекты адгезии соответствуют, по-

Рис. 4. Дефекты технологических процессов в GaAs-мезаструктуре (4-слойная эпитаксиальная структура): а — обратнорассеянные электроны (ОЭ); б — линейное ЭАИ, 397,3 кГц; в — нелинейное ЭАИ, 2/=496 кГц

видимому, «отслоениям» ~5—10 нм. Кроме того, наличие пятнистой структуры с сильным контрастом на эмиттерном электроде показывает, что при использовании технологии создания омического контакта с помощью электрохимического осаждения более дефектным является контакт к эмиттерной области, имеющей более высокий уровень легирования ~10²⁰ см⁻³, по сравнению с базой ~10¹⁸ см⁻³.

Другой пример диагностических возможностей РЭАМ показан на рис. 4, где представлены линейные и нелинейные ЭА изображения GaAs мезаструктуры. На линейных изображениях (рис. 4,б) легко видеть дополнительные элементы структуры, которые не обнаруживаются при обычных режимах наблюдения (рис. 4,а). В частности, выявлены области не полностью сформированной мезаобласти в виде белого канта вокруг некоторых элементов металлизации, а также дефекты травления мезаструктуры (А,В,С). Нелинейные изображения также качественно отличаются от всех известных типов изображений,

Рис. 5. ЭА визуализация имплантированных областей в Si (H⁺, доза 10^{13} см⁻², 100 кэВ): a — ОЭ, маска SiO₂ в левой части удалена; 6 — ЭАИ, 441,8 кГц

обнаруживая значительное увеличение разрешения и демонстрируя объемный характер (рис. 4,в).

На рис. 5 представлены ЭА изображения, показывающие высокую чувствительность метода при выявлении имплантированных областей в Si. Чувствительность метода по дозе при имплантации протонов в Si составляет ~5 · 10^{12} см⁻². Эксперименты на GaAs показали, что при имплантации ряда элементов, и в частности As⁺, может быть достигнута еще более высокая чувствительность по дозе ~ 10^{11} см⁻².

В качестве иллюстрации возможностей и характера ЭА изображений сложных готовых устройств на рис. 6 показано изображение фрагмента биполярной ИС.

Дальнейшее развитие физических основ метода требует построения углубленных теоретических более моделей генерации звука с учетом различных механизмов. Простая тепловая модель позволяет удовлетворительно интерпретировать лишь некоторые эксперименты на металлических объектах. Термоупругий механизм, несомненно, имеет место и в полупроводниковых материалах. Однако пространственная и временная дисперсия теплового источника в полупроводниках, обусловленная диффузией и рекомбинацией неравновесных носителей заряда, а также наличие дополнительных, нетепловых механизмов генерации звука из-за пьезосвойств или вклада деформационного потенциала могут усложнять интерпретацию контраста на ЭА изображениях объектов микроэлектроники. Первые успешные попытки учета вклада всех этих процессов сделаны в ряде теоретических работ [9, 10]. Рассматривая в целом ЭА изобра-

Рассматривая в целом ЭА изображения всех представленных структур,

Рис. 6. Изображения фрагмента ИС: *а* — ОЭ; *б* — ЭАИ, (938 кГц)

можно утверждать, что РЭАМ обладает по сравнению с известными РЭМ методами уникальными возможностями для визуализации и диагностики с высоким разрешением неоднородно-

стей поверхности и приповерхностных слоев структур и объектов микроэлектроники. Тот факт, что растровый электронный микроскоп становится, по-видимому, наиболее универсальным инструментом для исследований материалов микроэлектроники, уже имеющимся во многих технологических центрах, открывает возможность для достаточно быстрого пополнения арсенала РЭМ методов еще одним эффективным диагностическим методом. В настоящее время качественный характер многих ЭА изображений, а также неоднозначность интерпретации изображений сложных объектов в значительной мере компенсируются простотой и экспрессностью метода и объемом дополнительной информации о микроструктуре поверхности и приповерхностных слоев, извлекаемой из ЭА изображений.

Исследования особенностей формирования ЭА контраста на модельных полупроводниковых структурах позволят полностью определить методические аспекты применения метода РЭАМ и разработать физические основы анализа ЭА изображений.

ЛИТЕРАТУРА

1. C a r g i l l G.S. Ultrasonic imaging in scanning electron microscopy.--Nature, 1980, vol. 286, p. 691--693.

2. Brandis È., Rosen-. cwaig A. Themal wave microscopy with electron beams.- Appl. Phys. Lett., 1980, vol. 37, p. 98- 100.

3. Rosencwaig A., GershoA. Theory of the photoacoustic effect with solids.- J. Appl. Phys., 1976, vol. 47, N1, p. 64.

4. B a l k L.J., K u l t s c h e r N. Techniques for scanning electron acoustic microscopy.- Inst. Phys. Conf., 1983, Ser. 67, Sec. 8, p. 387.

5. Davies D.G. Scanning electron acoustic microscopy and its application.- Phil. Trans. Roy. Soc. Lond., 1986, vol. A320, N 1554, p. 243. 6. Holstein W.L. Imaging of

6. Holstein W.L. Imaging of thermal and elastic surface properties by scanning electron acoustic microscopy.- J. Electr. Micr. Techn., 1987, vol. 5, N 1, p. 91.

7. A r i s t o v V.V., G u r t ov o i V.L., E r e m e n k o V.G. Scanning electron acoustic microscopy of p-n-structures. – Inst. Phys. Conf., 1987, Ser. 87, p. 685–690.

8. N i g e l J. B u r t o n. NDT applications of scanning acoustic microscopy.- IEE Proc., 1987, vol. 134, Pt. A, p. 283-289.

9. Sablikov V.A., Sandomirskii V.B. Theory of the photoacoustic effect in semiconductors. – Phys. Stat. Sol., 1983, vol. 120, N 2, p. 471.

10. В асильев А., Сабликов В.А., Сандомирский В.Б. Фототермические и фотоакустические эффекты в полупроводниках и полупроводниковых структурах.— Изв. вузов СССР. Физика, 1987, № 6, с. 119.

Статья поступила 8 июня 1989 г.

УДК 621.385.833

КОНТРОЛЬ КАЧЕСТВА КРЕМНИЕВЫХ СТРУКТУР НА РАСТРОВОМ ЭЛЕКТРОННОМ МИКРОСКОПЕ

М.А.Макеев, д-р физ-мат. наук, вед. науч. сотр. Е.Б.Якимов

Применение РЭМ для анализа неоднородности электрофизических характеристик полупроводниковых материалов и структур позволяет решить задачи контроля и управления технологическими процессами на атомно-молекулярном уровне.

Для контроля генерационно-рекомбинационных неоднородностей полупроводниковых структур с *n*—*p*-переходами широко используется РЭМ в режиме наведенного тока (НТ). При этом измеряются распределения диффузионной длины, времени жизни, концентрации центров рекомбинации и т.д. [1, 2].

РЭМ в режиме НТ может быть использован и для контроля неоднородности распределения напряженности электрического поля, например, в высоковольтных полупроводниковых приборах, особенно работающих в режиме лавинного умножения носителей. НТ, возбуждаемый электронным зондом в заданной точке структуры, пропорционален скорости генерации электронно-дырочных пар и связан с распределением электрического поля на пути пролета электронов и дырок.

В сильных электрических полях, в режиме лавинного умножения НТ существенно зависит от пространственной неоднородности электрического поля в области дрейфа. Если время пролета носителей через образец меньше времени жизни, рекомбинацию можно не учитывать. В кремнии в режиме лавинного умножения это условие, как правило, выполняется.

Таким образом, измерение НТ вдоль плоскости *p*—*n*-перехода или в направлении, перпендикулярном ему, например, по сколу планарной структуры позволяет в режиме лавинного умножения контролировать однородность распределения электрического поля в локальных участках данной структуры.

Пользуясь уравнением Пуассона и экспериментальной зависимостью напряженности электрического поля от координаты на сколе, можно оценить флуктуации концентрации легирующей примеси в области *p*—*n*-перехода, определяющие неоднородность структуры. Для количественного измерения обработки распределений НТ использовался РЭМ JSM-35, сопряженный с мини-ЭВМ.

Пакет управляющих программ для мини-ЭВМ позволяет накапливать в памяти зависимости НТ от координат на образце, производить их математическую обработку, выводить данные зависимости на экран монитора, графическое печатающее устройство или графопостроитель.

Исследуемые образцы изготовлялись по планарной технологии и имели слой высокоомного кремния *p*-типа проводимости толщиной 40—50 мкм, легированную область с концентрацией примеси ~ 10^{16} см⁻³ *p*-типа проводимости толщиной 6—8 мкм и тонкую область n^+ -типа, образующую *p*—*n*-переход. Контактом к высокоомному слою служила сильнолегированная подложка.

Включение образцов во внешнюю измерительную цепь осуществлялось с помощью металлических контактных площадок, изготовленных на поверхности области *n*⁺-типа и подложке.

Для исследования распределения электрического поля в объеме образцов на структурах формировались сколы, перпендикулярные плоскости *p*—*n*-перехода.

На рис. 1 приведено изображение исследуемой структуры с наложенными распределениями НТ при сканировании через окно в контактной площадке по линии 1 вдоль плоскости *p*-*n*-перехода. Зависимость 2 снята при напряжении смещения 10 В и при отсутствии умножения, 3 — при напряжении 250 В в режиме лавинного умножения носителей. Сравнение этих зависимостей показывает, что структура, однородная при низких напряжениях смещения, становится существенно неоднородной в условиях лавинного умножения. Это может быть обусловлено малыми флуктуациями дозы примеси в легированной области р-типа проводимости. Отсюда следует, что высоковольтные приборы требуют очень высокого уровня однородности легирования в активных областях с высоким уровнем напряженности электрического поля из-за экспоненциальной связи между напряженностью поля и коэффициентом ионизации, и даже малые флуктуации концентрации легирующей примеси и электрического поля приводят к относительно большим флуктуациям коэффициента ионизации и наведенного тока в режиме лавинного умножения.

Еще одной особенностью исследуемых структур, работающих при высоких напряжениях смещения, является наличие микроплазм (МП) или областей с меньшим, чем у всей структуры, напряжением пробоя. Режим НТ является эффективным средством выявления таких областей.

На рис. 2 изображена структура в режиме НТ при сканировании через окно в контактной площадке. В локальных областях наблюдаются аномально высокие значения НТ, соответствующие МП. На изображение наложены распределения НТ в области МП. В левой части фотографии приведено увеличенное изображение одной из МП, отмеченное справа рамкой. Как известно, характеристики, в том числе и шумовые, структур с МП значительно хуже, чем таких же структур без МП. Однако при попадании электронного пучка непосредственно в ядро МП НТ стабилизируется и уровень шумов снижается. Данное явление позволяет обнаруживать МП, определяющие шумовые характеристики приборов при заданном напряжении смещения.

Сложное распределение НТ наблюдалось только при высоких ускоряющих напряжениях (более 15 кВ) и высоких токах электронного пучка. При низких ускоряющих напряжениях и токах темный ореол вокруг ярких точек на МП исчезал. Природа такого контраста пока окончательно не выяснена, но тот факт, что ореол появляется только при достаточно больших энергиях электронов, позволяет

Рис. 1. Изображение исследуемой структуры с наложенными распределениями НТ, соответствующими напряжениям смещения 10 В (2) и 250 В (3), при сканировании вдоль горизонтальной линии (1)

Рис. 2. Изображение структур с МП с профилем НТ, снятым при сканировании электронного пучка по центру МП. Слева — увеличенное изображение фрагмента, ограниченного справа рамкой

предположить, что он связан с протяженным сложным дефектом, например, дислокацией, пересекающей плоскость *p*-*n*-перехода, которая, как известно [3], может являться причиной появления МП. В процессе исследований с помощью метода селективного травления было обнаружено, что основным дефектом анализируемых структур является дислокация. Это подтверждает предположение о роли дислокации как центра зарождения МП. Величина НТ может определяться как собственными электрическими свойствами дислокации, так и ее атмосферой, образующейся в результате перераспределения легирующих примесей в технологических процессах. Можно предположить, что максимум НТ в центре МП обусловлен более высоким уровнем легирования, а темный ореол соответствует более низкому уровню легирования. С другой стороны, возникновение темного ореола, возможно, связано с наличием у дислокации области, имеющей сильную рекомбинационную активность [4]. Природа МП определялась по зависимости НТ в ядре МП от напряжения смещения при различных температурах (рис. 3).

Картина распределения МП по площади исследуемой структуры при различных температурах не изменялась. Если МП обусловлена флуктуацией дозы легирующей примеси, то эта примесь, вероятно, имеет мелкий, а не глубокий энергетический уровень в запрещенной зоне, который не изменяет своего зарядового состояния при изменении температуры. Анализ зависимостей, приведенных на рис. З, показывает, что по мере уменьшения температуры от 300 до 180 К вольт-амперные характеристики НТ в ядре МП сдвигаются в область более низких напряжений. Зависимость напряжения выхода вольт-амперной характеристики на заданный уровень тока от температуры практически линейная. Такой вид данной зависимости характерен для однородной структуры [5]. Исходя из этого можно предположить, что ядро МП имеет структуру, аналогичную структуре исследуемого образца с более высоким уровнем легирования в области р-типа проводимости.

В заключение следует отметить, что после воздействия электронного пучка вольт-амперные характеристики структур изменялись. Однако это изменение наблюдалось в области низких напряжений смещения в виде возрастания тока. Вольт-амперная характеристика при высоких напряжениях смещения в режиме лавинного умножения оставалась без изменения. Такое поведение вольт-амперных характеристик, возможно, связано с перезарядкой поверхностных состояний в местах выхода p-n-перехода на поверхность. Кроме того, наблюдалось несколько случаев погасания МП после длительного воздействия электронного пучка. Данное явление пока не нашло объяснения. Вероятно, оно связано с зарождением собственных точечных дефектов при воздействии электронов подпороговых энергий и взаимодействием их с технологическими дефектами.

Таким образом в работе показано, что кремниевые структуры с p—n-переходами, однородные при малых напряжениях смещения, становятся существенно неоднородными при высоких напряженностях в режиме лавинного умножения. РЭМ в режиме НТ является эффективным средством контроля таких неоднородностей. Исследованы температурные зависимости НТ в ядре МП. Обнаружено, что распределение МП по площади исследуемых структур не зависит от температуры. Показано, что зависимость НТ от координаты в окрестности МП имеет сложный вид, вероятно, связанный со сложным характером распределения легирующей примеси в этой области.

ЛИТЕРАТУРА

1. B e r z F., K u i k e n H.K. Theory of life time measurements with the scanning electron microscope.-- Solid-State Elektron., 1976, v. 19, N 6, p. 437-445.

2. Рейвик К. Дефекты и примеси в полупроводниковом кремнии. — М.: Мир, 1984. — 470 с. 3. Lesnia K. M., Holt D.B. Defekt microstructure

3. Les nia k M., Holt D.B. Defekt microstructure and microplasmas in silicon avalanche photodiodes.--- J. Mater. Sci., 1987, v. 22, N 10, p. 3547--3555.

4. Electrical properties and defect structure of plastically deformed silicon crystals doped with gold./V.V.Aristov, I.E.Bondarenko, J.Heydenreich et al.— Phys. Stat. Sol. (a), 1987, v. 102, p. 687—695. 5. Техника оптической связи. Фотоприемники./Под

5. Техника оптической связи. Фотоприемники./Под ред. Тсанга.— М.: Мир, 1988.— 526 с.

Статья поступила 3 июля 1989 г.

УДК 621.385.833

БЕСКОНТАКТНЫЙ МЕТОД КОНТРОЛЯ ЭЛЕКТРОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ СТРУКТУР

науч.сотр. А.П.Арзамасцев, д-р физ.-мат.наук В.Г.Дюков, канд.физ.-мат.наук, ст.науч.сотр. В.Н.Файфер

Применение РЭМ в режиме измерения поверхностной и вентильной фото-э.д.с. позволяет исследовать процессы ионной имплантации, обеспечивает субмикронное разрешение, определяемое диаметром электронного зонда.

Производство изделий микроэлектроники сопровождается контролем геометрических, металлургических и электрофизических параметров формируемых базовых структур. Для контроля микрогеометрии элементов обычно используют оптические, растровые электронные и растровые оптические микроскопы. Металлургические параметры контролируются при помощи методов вторичноионной масс-спектрометрии и оже-спектроскопии. Среди локальных методов контроля, отображающих электрофизические характеристики формируемых структур, традиционным является метод наведенного тока в РЭМ и РОМ (EBIC и OBIC), но для его использования необходимо наличие электрических контактов к анализируемой структуре. Что же касается бесконтактных методов отображения электрофизических параметров микроструктур, позволяющих проводить отбраковку изделий на ранних стадиях технологического процесса, то они в основном базируются на локальном возбуждении фото-э.д.с. или катодо-э.д.с. при помощи светового [1, 2] или электронного зонда [3] с формированием информативного сигнала посредством электролитического контакта или емкостной связи. Указанные методы позволяют контролировать электрические и рекомбинационные неоднородности в полупроводниковых структурах, однако измерение абсолютных значений возбуждаемой при этом э.д.с. является затруднительным, поскольку информативный сигнал зависит не только от этого значения, но и емкости между электродом и возбуждаемой областью полупроводника, размеры которой в свою очередь определяются диффузионными и ре комбинационными параметрами. Пространственное разрешение этих методов также определяется значением диффузионной длины в материале.

Субмикронным разрешением обладает метод потенциального контраста [4], который также применяется для контроля электрических неоднородностей полупроводниковых материалов и структур [5, 6]. Он позволяет измерять контактные разности потенциалов между областями на поверхности полупроводников, но измеряемые значения могут отличаться от значений диффузионных барьеров вследствие как изгиба зон на поверхности, так и влияния на него электронного зонда, что отмечалось, например, при анализе параметров ионнолегированных структур по сдвигу оже-пиков кремния [7].

Бесконтактный метод измерения в РЭМ поверхностной и вентильной фото-э.д.с. позволяет получать абсолютное значение сигнала в широком диапазоне частот и обеспечивает субмикронное разрешение, определяемое диаметром электронного зонда. Сущность метода заключается в отображении переменного микропотенциала поверхности полупроводника из области локализации электронного зонда в режиме потенциального контраста РЭМ с линеаризацией, вызванного однородным по поверхности и промодулированным по интенсивности освещением контролируемой структуры.

Измеряемый объект освещается светодиодом или лазером, подключенным к генератору тока. Сигнал с выхода коллектора, оснащенного энергоанализатором порогового типа с тормозящим полем, снимается в режиме потенциального контраста, усиливается с помощью усилителя постоянного тока и подается на сетку энергоанализатора коллектора, обеспечивая режим линеаризации. Регистрация фото-э.д.с. осуществляется синхронным детектором, на опорный вход которого подается промодулированный сигнал от генератора, и самописцем в режиме сканирования по линии. Сигнал фото-э.д.с. можно также визуализировать на экране ВКУ в виде чередующихся полос при соответствующем подборе скорости развертки и частоты модуляции. Фактически схема позволяет измерять изменение потенциала поверхности в каждой точке при освещении объекта, и результаты измерений, таким образом, не зависят от его эмиссионных свойств. При достаточно высоком уровне световой накачки, когда зависимости регистрируемого сигнала от мощности накачки близки к насыщению, измеряемое значение фото-э.д.с. близко к значению поверхностного потенциального барьера. В данном случае реализуется и субмикронное пространственное разрешение метода, так как оно определяется уже не диффузионной длиной, а размерами области вторичной электронной эмиссии, поскольку в момент освещения при достаточной мощности диффузионное перераспределение носителей заряда не сказывается существенно на значении поверхностного потенциального барьера.

Следует отметить, что при проведении измерений фото-э.д.с. в режиме потенциального контраста РЭМ необходимо, чтобы катодо-э.д.с., возбуждаемая электронным зондом, была мала по сравнению с регистрируемым сигналом. Последнее достигается экспериментально — путем уменьшения мощности электронного зонда до выхода сигнала в насыщение. При этом для обеспечения режима линеаризации необходимо, чтобы сигнал обратной связи на сетку энергоанализатора после усилителя постоянного тока позволял поддерживать постоянной разность потенциалов между сеткой U_c и образцом $U_{\rm ofp}$, или

$$K_{\rm y}>> \frac{d(U_{\rm c}-U_{
m obp})}{dU_{\rm K}},$$

где K_y — коэффициент усиления УПТ, $d(U_c - U_{obp})$ — изменение разности потенциалов между сеткой и образцом, dU_k — вызванное им изменение потенциала на выходе коллектора.

При достаточной мощности световой накачки, когда зависимости сигнала фото-э.д.с. от нее близки к насыщению, разработанный метод позволяет проводить измерения абсолютных значений потенциальных барьеров на поверхности полупроводников. Это может найти применение при анализе работы приборов с барьером Шотки, а также при измерении диффузионных барьеров методом потенциального контраста, как уже упоминалось выше. При наличии омических контактов и возможности их коммутации можно непосредственно определять диффузионные барьеры по измерениям вентильной фото-э.д.с. При малых мощностях световой накачки, когда плотность фототока Јф невелика по сравнению с плотностью обратного тока *p*-*n*-перехода J_0 , зависимость сигнала фото-э.д.с. от J_0 носит квазилинейный характер в соответствии с выражением

$$U_{\Phi} = \frac{kT}{e} \ln(1 + \frac{J_{\Phi}}{J_0}),$$

где k — постоянная Больцмана, T — абсолютная температура, e — заряд электрона. Проведение измерений в данном режиме позволяет контролировать p—n-переходы с большими токами утечек до нанесения металлизации.

На рисунке представлены сигналограммы вентильной фото-э.д.с. при сканировании по линии, пересекающей легированные области резисторной сборки (интенсивность освещения $P_{\rm CB} = 10$ мВт/см², длина волны $\lambda = 0,93$ мкм, частота модуляции j=5 кГц, энергия электронного зонда E=15 кэВ, ток зонда $I_3 = 10^{-10}$ А). Объект — резисторная сборка, состоящая из легированных областей *p*-типа на кремниевой подложке. Данные сигналограммы подтверждают высокую информативность предложенного метода и возможность исследования структур с субмикронным пространственным разрешением.

Метод поверхностной фото-э.д.с. позволяет исследовать процессы ионной имплантации путем измерения поверхностных потенциальных барьеров в имплантированных областях и смежных участках пластин и их изменений в зависимости от дозы и условий имплантации [8]. При этом следует отметить высокую чувствительность метода, позволяющего, например, наблюдать на поверхности кремния микрообласти, имплантированные ионами бора, начиная с дозы 10¹³ см⁻².

ЛИТЕРАТУРА

1. Ангелова Л.А., Вернер В.Д., Сагиян Г.М. Расширение функциональных возможностей и повышение чувствительности метода фотоэлектрического сканирования. — Измерения и контрольно-измерительная аппаратура, 1985, вып. 3, с. 71—74. 2. D i s t e f a n o T., V i g g i a n o J. Interface imaging

2. DistefanoT., ViggianoJ. Interface imaging by scanning internal photomission.- IBM J. Res. Develop., 1974, vol. 18, p. 94–99.

3. Тестирование полупроводниковых структур электронно-зондовыми методами/А.В.Гостев, Н.С.Данилин, М.Т.Картамышев и др.— Изв. АН СССР. Сер. физ., 1984, т. 48, № 12, с. 2397—2403.

4. Д ю к о в В.Г. Растровая электронная микроскопия поверхностного потенциального рельефа и ее применение. — Поверхность, физика, химия, механика, 1982, № 11, с. 1—15.

5. Дюков В.Г., Коломейцев М.И. Применение методов растровой электронной микроскопии в микроэлектронике. — Электронная промышленность, 1981, вып. 2, с. 8—15.

6. Исследование легированных областей полупроводников методами растровой электронной микроскопии/ В.Г.Дюков, С.А.Иноземцев, А.Г.Итальянцев и др. — Электронная техника. Сер. 2. Полупроводниковые приборы, 1981, вып. 3, с. 15—20.

7. P a n t e l R. Anger voltage contrast depth profiling of shallow p-n-junctions. Appl. Phys. Lett., 1983, vol. 43, N 7, p. 650-652.

8. Арзамасцев А.П., Дюков В.Г. Влияние ионной имплантации на поверхностные потенциальные барьеры в кремнии. — В кн.: Тезисы докладов VI Всесоюзного симпозиума РЭМ-89. — Звенигород, 1989, с. 77.

Статья поступила 14 августа 1989 г.

УДК 539.25:620.187

РЕНТГЕНОВСКАЯ И ИНФРАКРАСНАЯ СКАНИРУЮЩАЯ МИКРОСКОПИЯ И ТОМОГРАФИЯ

канд.физ.-мат.наук, ст.науч.сотр. Э.И.Рау, канд.физ.-мат.наук, ст.науч.сотр. А.А.Тимонов

Применение рентгеновских и инфракрасных лучей в качестве зондирующих излучений в растровой микроскопии значительно расширяет круг электрофизических параметров, контролируемых с помощью РЭМ, позволяет проводить объемные исследования распределения неоднородностей в кристалле.

Диагностика объектов микроэлектроники не ограничивается только методами растровой электронной микроскопии (РЭМ). Дополнительную, а иногда исключительную информацию можно получить в других видах зондирующих излучений, например, рентгеновском и инфракрасном. Рентгеновский и инфракрасный микроскопы, выполненные как интроскопические приставки к РЭМ, могут функционировать как в реальном масштабе времени, так и в цифровом варианте с обработкой изображений с помощью мини-ЭВМ — для целей реконструктивной вычислительной томографии (РВТ). В первом варианте метод РЭМ сопряжен с уни-

В первом варианте метод РЭМ сопряжен с универсальным сканирующим модулем, реализованным в виде прецизионных пьезоманипуляторов, управляемых генератором разверток РЭМ. В случае использования ИК излучения информация о микронеоднородностях в объеме кристаллов получается при детектировании сигналов, обусловленных локальными вариациями коэффициентов поглощения, отражения, поляризации или рассеяния света. Каждый из этих режимов позволяет определять необходимый круг электрофизических параметров в исследуемом материале или полупроводниковой структуре, например, распределение примесных преципитатов, полей упругих напряжений, «тепловые пятна» и шнуры тока, внутреннее строение устройств.

Опробованы также некоторые физико-технические решения аппаратурного и компьютерного методов улучшения пространственного разрешения, чувствительности и контрастности получаемых изображений, а также повышения информативности и достоверности экспериментальных результатов. Реализованы следующие подходы CTDOбирование пучка рентгеновского излучения и ревыделение сигнала, детектирование зонансное рентгеновских квантов по энергиям, фильтрация конфокального изображения, использование ал-горитма свертки с обратной фильтрацией — для улучшения пространственного разрешения и неразрушающей реконструкции внутренней микроструктуры объектов.

Оптический сканирующий интроскоп. Для исследований в оптическом диапазоне излучений создана лабораторная модель сканирующего лазерного микроскопа на основе оптического микроскопа просвечивающего типа [1]. Источником оптического излучения является He—Ne-лазер «ЛГ-126», рабо-тающий на длинах волн 0,63; 1,15 и 3,39 мкм. Оптическое излучение (в том числе ИК диапазона) фокусируется с помощью соответствующих объективов (рис. 1) в области объекта. Прошедшее через объект излучение проходит через собирающую конфокальную оптическую систему (на рис. 1 не показана) и детектируется на полупроводниковом датчике. Аналогичным образом детектируется на кольцевом датчике с помощью конфокальной системы, расположенной под углом 90° к оси пучка, рассеянное излучение. Для исследования поляризационных эффектов до и после объекта предусмотрена установка поляризующих пленок или призм с возможностью вращения анализатора. Конфокальная система позволяет получать информацию о внутренних слоях объекта аппаратным способом [2].

При недостаточной информативности или четкости изображений глубинных слоев необходима томографическая постановка эксперимента как в классическом варианте [3], так и в конусных пучках [4]. Применение томографического подхода в поляризационном контрасте может дать качественно новые результаты об объемных свойствах пластических деформаций, которые образуются вокруг единичных дислокаций или вокруг скоплений дислокаций в плоскостях скольжения.

Поляризационный контраст можно количественно описать, если учитывать расположение плоскополяризованной волны относительно одного из главных направлений исследуемого кубического кристалла. Если на образец падает пучок интенсивности I₀, а на детекторе фиксируется пучок интенсивностью I, то

$$\frac{I}{I_0} = \sin^2(2\gamma)\sin^2\frac{\delta}{2},$$

где у — угол между направлением поляризации падающего света к одному из главных направлений кристалла. Аргумент б определяется из соотношения:

$$\delta = \frac{2\pi h}{\lambda} C(e_{11} - e_{22}),$$

где h — толщина исследуемого образца, λ — длина волны излучения, e_{11} и e_{22} — деформации по главным направлениям. Здесь C — усредненный упругооптический коэффициент (известно, что для ближнего ИК света в кристаллическом кремнии $C \approx$ 1).

Как видно из вышесказанного, измеряя интенсивность прошедшего света *I*, можно судить о средних напряжениях внутри кристалла, а в некоторых случаях и определять знак вектора Бюргерса. На рис. 2 приведены результаты такого эксперимента, из которых следует, что поле пластических деформаций занимает значительно большую площадь, чем сам геометрический след укола индентором. Можно также обнаружить поле деформаций вокруг единичных дислокаций, хотя размеры самих дислокаций не позволяют наблюдать их в оптическом диапазоне.

Как известно, для изучения распределения дислокаций по глубине применяется метод послойного гравления. Но при травлении верхних слоев может меняться деформационное поле нижних слоев. Поэтому важным является изучение деформации глубинных слоев без разрушения объекта. В этой связи использование томографического подхода может в определенных случаях дать положительные результаты. В работе [5] рассматривается такой подход томографии тензорного поля. В общем виде решение этой задачи весьма осложнено.

Если толщина исследуемого объекта *h* невелика, а деформации можно считать слабыми (т.е. разница между *e*₁₁ и *e*₂₂ невелика), то справедливо:

$$\sin^2\frac{\delta}{2}\simeq\frac{\delta^2}{4}$$

В этом случае отношение $\frac{I}{I_0}$ значительно упрощается

$$\frac{I}{I_0} = \sin^2(2\gamma) \frac{\delta^2}{4}.$$

Последнее соотношение позволяет реконструировать поля деформаций внутри кристаллов неразрушающими томографическими методами.

Регистрация степени поглощения ИК излучения (вблизи края фундаментального поглощения) при его прохождении через полупроводниковый кристалл дает возможность рассчитывать и находить пространственное распределение некоторых физических параметров кристалла. Коэффициент поглощения зависит от локальной структуры энергетических уровней, в частности от ширины запрещенной зоны и концентрации свободных носителей. Вблизи длинноволновой границы поглощения (для Si эта величина равна 1,12 мкм) зависимость коэффициента поглощения от указанных параметров довольно резкая [1]. Поэтому любые изменения, вызванные локальными вариациями давления, температуры, уровня легирования, примесными неоднородностями и рядом других параметров, при λ=1,15 мкм, (одна из длин волн используемого Не-Ne-лазера) приводят к заметным изменениям контраста (рис. 3).

Рис. 1. Схема универсального интроскопа-микротомогра фа: 1 — лазер, 2 — электрооптический модулятор, 3 — оптическая фокусирующая система, 4 — поляризатор, 5 — исследуемый объект, 6 — сканирующий столик, 7 — шаговые двигатели, 8 — датчик, 9 — блоки КАМАК, 10 — периферийные устройства, 11 — мини-ЭВМ, 12 — рентгеновская микрофокусная трубка 13 — рентгеновский детектор

Рис. 2. Изображения следов укола индентором на кристалле MgO. Розетки вдавливания в просвечивающем режиме (a), в катодолюминесценции РЭМ (б) и в поляризованном трансмиссионном контрасте (в)

Примесные скопления, преципитаты, их размеры и форма определяются при регистрации угловой зависимости рассеяния — как малоуглового [6], так и рэлеевского [7]. Эта перспективная область диагностики еще только развивается, но обещает стать эффективным методом контроля кристаллов.

Рентгеновский интроскоп-микротомограф. Источником рентгеновского излучения в разработанном сканирующем микроскопе (на основе проекиионного рентгеновского микроскопа «Мир-З») являются сменные микрофокусные трубки с разными материалами мишени (Cu; W; Si). Магнитная фокусировка обеспечивает минимальный диаметр электронного пучка на аноде около $d_0=3$ мкм.

В установке в качестве сцинтилляционного детектора применялся кристалл NaJ(Te) совместно с малошумящим ФЭУ. Система обработки импульсов собрана из стандартных блоков системы КАМАК, в том числе из одноканальных и многоканальных анализаторов. Соответствующим интерфейсом обеспечивался ввод нужной информации в мини-ЭВМ, которая управляла сканирующим столиком и проводила дальнейшую обработку видеосигнала.

Область применения рентгеновского интроскопамикротомографа определяется его основными параметрами — пространственное разрешение составляет единицы микрон, энергетический диапазон

Рис. 3. Изображения полупроводниковых структур «на просвет» ИК излучением: а — сильноточный транзистор; примесные неоднородности в монокристалле кремния

Рис. 4. Тестовая структура — электролитическая медная сетка с размером проволочек 3 мкм (а). Изображения шин металлизации микросхем, полученные в трансмиссионных рентгеновских лучах (б)

Рис. 5. Изображение микроструктуры ВТСП-керамики. Поле зрения — 200 мкм

до 30 кэВ. В сочетании с большими возможностями спектроскопического подхода в интроскопии и томографии селективно поглощающих объектов вышеописанный комплекс применим в довольно широкой области исследований полупроводниковых материалов и приборов, керамических изделий (в частности, структуры ВТСП-керамики).

Использование спектрометрического подхода в рентгеновской микроскопии и микротомографии позволяет не только визуализировать неоднородности в распределении плотности, но и определять элементный состав объекта. Спектральная аппаратура позволяет определять спектр излучения источника, выбирать нужный интервал энергий для наиболее эффективного выделения известных элементов, которые входят в состав образца.

На рис. 4,а приводится изображение тестовой структуры, демонстрирующей разрешение установки, на рис. 4,6 — изображения микросхем в неразгерметизированных керамических корпусах. Существенного повышения контрастности изображения удалось получить путем настройки спектроанализатора на энергии, соответствующие краю поглощения присутствующих в объекте элементов. Так, на рис. 4,6 приведено теневое изображение микросхемы с металлизацией Al-Au (толщина токоведущих дорожек 0,15 мкм). В данном случае спектрометр был настроен на край поглощения золота — 11,9 кэВ.

При постановке томографического эксперимента необходимо подбирать энергию квантов с учетом того обстоятельства, что присутствие в образце элементов с близкими атомными номерами усложняет идентификацию. В этом случае требуется детектор с большой разрешающей способностью. На рис. 5 приводится пример исследования структуры ВТСП-керамики. Наблюдаемые неоднородности (рис. 5,а), снятые на линии Сика, связаны с неравномерностью распределения более тяжелых элементов в объеме. Характерные размеры неоднородностей 50-80 мкм. Более четкая дифференциация элементного распределения получается при обработке информации методами РВТ. На рис. 5,6 приводится изображение сечения ВТСП — керамического стержня диаметром 200 мкм, на котором хорошо заметна неоднородность распределения плотности элементов в керамике.

ЛИТЕРАТУРА

1. Бочикашвили П.Н., Рау Э.И., Савин Д.О. Лазероскан на базе комплекса РЭМ-ЭВМ.— Изв. АН СССР, сер. физическая, 1988, т. 52, № 7, с. 1278—1283.

АН СССР, сер. физическая, 1988, т. 52, № 7, с. 1278—1283. 2. W i l s o n T. Scanning optical microscopy.— Scan-ning, 1985, v. 7, N 2, р. 79—87. 3. Вычислительная микротомография объектов в рентгеновской и оптической сканирующей микроскопии/ А.Н.Тихонов, А.В.Гончарский, Э.И.Рау и др.— ДАН СССР, 1986, т. 289, № 5, с. 1105—1107.

4. Микротомография слоистых сред в конусных пуч-к/А.Н.Тихонов, П.Н.Бочикашвили, А.В.Гончарский и

 Ангротомография словства сред в конустых пуч-ках/А.Н.Тихонов, П.Н.Бочикашвили, А.В.Гончарский и др.— ДАН СССР, 1987, т. 296, № 5, с. 1095—1097.
 5. А б е н Х.К., К е л л К.Ю. К оптической томогра-фии тензорного поля.— В кн.: Проблемы и перспективы оптических методов обработки изображений. — Л.: Физ.тех. ин-т. им. Иоффе, 1984, с. 8-14.

6. Калинушкин В.П. Исследование примесных дефектов в полупроводниках методом расселния лазер-ного излучения ИК-диапазона.— Труды ИОФАН, 1986,

r. 4, c. 3-59.
7. G a l l P., F i l l a r d J. Microtomography observation of precipitates.- J. Appl. Phys., 1988, v. 64, N 9, p. 5161-

Статья поступила 7 июля 1989 г.

Сверхвысоковакуумная отражательная электронная микроскопия для изучения структуры и микроморфологии атомно-чистой поверхности кремния

А.В.Латышев, А.Б.Красильников, канд.физ.-мат. наук **А.Л.Асеев,** д-р физ-мат. наук, проф. **С.И.Стенин**

Метод сверхвысоковакуумной отражательной электронной микроскопии может быть применен для визуализации моноатомных ступеней и сверхструктурных доменов на чистой поверхности кремния, позволяет проводить in situ эксперименты по изучению процессов сублимации и начальных стадий эпитаксии пленок кремния.

Развитие технологии молекулярно-лучевой эпитаксии требует получения атомно-чистых поверхностей полупроводников, определения природы сверхструктурных перестроек, выяснения механизмов поведения адатомов на чистой поверхности и их взаимодействия со стоками, управления микроморфологией поверхности и т.д. [1, 2]. Для решения этих проблем необходимо развивать новые методы исследования поверхности. Разработана система сверхвысоковакуумной отражательной электронной микроскопии (СВВ ОЭМ), которая использовалась при изучении процессов, протекающих на атомно-чистой поверхности кремния при сублимации и молекулярнолучевой эпитаксии.

Метод СВВ ОЭМ обладает латеральным разрешением до 0,5 нм, что достаточно, например, для визуализации отдельных моноатомных ступеней и сверхструктурных доменов на чистой поверхности. Важной особенностью этого метода является возможность проведения in situ экспериментов [3]. Как и в просвечивающей электронной микроскопии, в ОЭМ для формирования изображения используется один (или несколько) дифрагированных электронных пучков, попадающих в апертурную диафрагму микроскопа, которая находится на оптической оси. В отличие от просвечивающей электронной микроскопии в ОЭМ электронный пучок, сформированный осветительной системой микроскопа, с помощью электромагнитных катушек отклоняется от оптической оси микроскопа и падает под углом Θ на поверхность кристалла [3]. Малые значения угла Θ (10⁻³—10⁻² рад) обусловливают малые значения анализируемых толщин приповерхностных областей кристалла (1-10 межатомных расстояний) и, как следствие, — высокую чувствительность ОЭМ к структуре поверхностного слоя. Этот же фактор приводит к тому, что увеличение в направлении падения электронного пучка М меньше, чем увеличение в направлении, перпендикулярном электронному пучку M_⊥(M_⊥/M_I=20-30). Из-за различия увеличений изображения сжаты в направлении падения электронного пучка.

Высокая чувствительность метода ОЭМ к структуре приповерхностных слоев приводит к тому, что контраст от реальной поверхности определяется пленкой естественного окисла и загрязнений.

Для изучения кристаллической структуры поверхностей необходимо их получать и сохранять атомночистыми в процессе наблюдения. В методе ОЭМ это обеспечивается путем создания сверхвысокого вакуума вблизи образца с помощью устройства дифференциальной криогенной откачки, встроенного в колонну микроскопа, а также установкой дополнительных азотных экранов, круглосуточной откачкой микроскопа адсорбционным насосом, использованием безмасляной системы откачки. Данное устройство позволяет нагревать исследуемый образец пропусканием электрического тока через кристалл; обеспечивает вращение кристалла в брегговской и азимутальной плоскостях и его шлюзование без нарушения вакуума в колонне; допускает контролируемое напыление различных веществ на исследуемую поверхность из вольфрамовых тиглей или методом сублимации; измерение интенсивности дифракционных пучков с помощью детектора электронов, анализ состава газовой среды в вакуумной системе микроскопа с помощью масс-спектрометра.

Образцы кремния размерами 0,3×1×8 мм после полировки подвергаются термическому окислению, перед помещением их в микроскоп термический окисел удаляется в плавиковой кислоте. На рис. 1, а и б показаны изображения и микродифракция подготовленной таким образом поверхности кремния. Волнистый контраст на изображениях является теневым и обусловлен микрорельефом тонкой пленки естественного окисла, высота которого 1-2 нм и характерный размер в плоскости объекта 4—5 нм. Нагрев кристалла до 900—1000°С в сверхвысоком вакууме приводит к удалению естественного окисла формированию на поверхности частиц эпитаксиального карбида кремния с размерами 5—10 нм. Частицы отчетливо видны на ОЭМ-изображениях (рис. 1, в) и дают дополнительные рефлексы на дифракционной картине (рис. 1, г). При температуре более 1000°С частицы карбида кремния с поверхности исчезают. При температуре более 1200°С время полного удаления частиц карбида кремния не превышает 30 с. При этом на ОЭМ-микрофотографиях присутствует изображение системы моноатомных ступеней (рис. 1, д) а на дифракционной картине при 7<830°С наблюдаются дополнительные сверхструктурные рефлексы, соответствующие перестроенной поверхности (7×7) (рис. 1, е). Указанные особенности процесса очистки поверхности описаны также в работе [4].

О полной очистке поверхности кремния можно судить, во-первых, по отсутствию дополнительных дифракционных рефлексов; во-вторых, по наличию обратимых фазовых переходов $(7\times7)=(1\times1)$ для кремния (111) и $(1\times2)=(1\times1)$ для кремния (001), наблюдаемых на дифракционной картине и ОЭМ-изображениях поверхности при изменении температуры; в-третьих, по наблюдению на поверхности моноатомных ступеней без центров их торможения.

Формирование микрорельефа поверхности кремния (111) в процессе сублимации. Наиболее распространенный способ получения атомно-чистой поверхности кремния — высокотемпературный прогрев в сверхвысоком вакууме. Поскольку на поверхности кремния (111) при сублимации в условиях нагрева пропусканием через исследуемый кристалл электрического тока формируются макроступени высотой до нескольких десятков нанометров, исследовались факторы, определяющие образование макроступеней и изучалась кинетика их формирования.

Идеальная равновесная вицинальная поверхность кристалла должна содержать систему моноатомных ступеней, расположенных на одинаковых друг от дру-

Рис. 1. ОЭМ-изображения и картины микродифракции последовательных стадий получения атомно-чистой поверхности кремния: исходная поверхность (а, б), прогрев при T=950°C (в, г) и T=1250°C (д, е)

га расстояниях $d_{0} \simeq a_{111}/tga$, где a_{111} — межплоскостное расстояние для (111), a — угол отклонения от сингулярной плоскости (111). В процессе сублимации с помощью СВВ ОЭМ наблюдается движение моноатомных ступеней со скоростью, прямо пропорциональной расстоянию между ступенями (рис. 2). Это указывает на наличие диффузионного обмена адатомами между ступенями [5]. Скорость движения ступеней подчиняется аррениусовской зависимости от температуры с энергией активации 4,2 \pm 0,2 эВ.

В соответствии с результатами теоретического анализа [6—8] система эквидистантно расположенных диффузионно связанных моноатомных ступеней является кинематически нестабильной относительно флуктуаций расстояний между ними и может иметь тенденцию к коалесценции ступеней в макроступени.

Экспериментально установлено [9], что при нагреве постоянным током в определенных интервалах температур происходит перестройка системы эквидистантно расположенных моноатомных ступеней в систему эшелонов ступеней, которая состоит из участков с низкой плотностью ступеней и скоплений моноатомных ступеней. Моноатомные ступени в скоплениях находятся на расстояниях, много меньших do. Положение температурных интервалов эшелонирования зависит от направления постоянного электрического тока, нагревающего кристалл. Если направление тока совпадает с направлением движения моноатомных ступеней в процессе сублимации, то эквидистантно расположенные ступени перестраиваются в эшелоны в интервале температур 1050—1250 и более 1350°С (рис. 3, а). При противоположном направлении тока формирование эшелонов ступеней происходит в интервале 1250—1350°С (рис. 3, 6). Прогрев кристалла переменным током с частотой 50Гц формирует на поверхности систему равномерно расположенных моноатомных ступеней с $d \approx d_{\circ}$ при любых температурах сублимации (рис. 3, в).

При образовании эшелонов увеличение среднего расстояния *L* между ними происходит за счет перераспределения моноатомных ступеней. Величина *L* зависит от температуры и времени отжига образца (рис. 4). Расстояние между моноатомными ступенями в эшелоне уменьшается с увеличением температуры кристалла или числа ступеней в эшелоне при фиксированной температуре. Например, при увеличении числа ступеней в эшелоне от 20 до 160 при температуре 1340°С среднее расстояние между ступенями в эшелоне уменьшается от 26 до 7 нм, а при снижении температуры от 1340 до 1130°С среднее расстояние между ступенями в эшелоне из 20 ступеней увели-

чивается от 26 до 45 нм. Скорость движения эшелона в квазистанционарном состоянии, когда число подошедших к нему ступеней равняется числу ушедших, примерно обратно пропорциональна числу ступеней в нем.

Перестройка эквидистантно расположенные ступени — эшелоны обратима: при изменении температуры образца за пределы температурных интервалов эшелонирования сформированные эшелоны трансформируются в регулярную систему моноатомных ступеней (см. рис. 3). Как видно из рис. 5, ширина изображения эшелона увеличивается за счет увеличения расстояния между моноатомными ступенями в эшелоне. Распад эшелонов происходит путем генерации моноатомных ступеней из эшелона на верхнюю террасу. Длительный отжиг кристалла формирует систему равномерно расположенных моноатом-

Рис. 4. Зависимость расстояния между эшелонами от времени отжига кристалла при различных температурах эшелонирования (температуры 1130 и 1230°С соответствуют нагреву по схеме рис. 3, а, 1270 и 1330°С — по схеме рис. 3, 6)

Рис. 5. ОЭМ-изображения одного и того же участка поверхности кремния после отжига в условиях нагрева по схеме рис. 3, б при $T=1260^{\circ}$ С (а) и последующего отжига при $T=1000^{\circ}$ С в течение 60 мин (б)

ных ступеней. Скорость распада эшелонов уменьшается с понижением температуры.

Образование эшелонов вместо макроступеней указывает на существование сил, препятствующих слиянию отдельных моноатомных ступеней при уменьшении расстояний между ними. По дифракционному контрасту моноатомных ступеней можно судить об упругой деформации кристаллической решетки в области ступеней, которая составляет (1—5)× ×10⁻⁴ [4]. Можно предположить, что силы, препятствующие слиянию моноатомных ступеней в макроступени, обусловлены упругим взаимодействием ступеней.

Моноатомные ступени на поверхности кремния (001). На чистой поверхности кремния (001) возможно существование ступеней как двухатомной (*a*/2), так и моноатомной высоты (*a*/4), где *a* — постоянная кристаллической решетки. При выращивании

полупроводниковых пленок А В на поверхности кремния (001), содержащей моноатомные ступени, формируются антифазные домены, которые ухудшают структурные и электрические параметры пленок [10]. Указанные домены отсутствуют в пленках, выращенных на поверхности с двухатомными ступенями. В связи с этим проведены эксперименты по выяснению факторов, определяющих высоту ступеней на поверхности кремния (001).

Реконструкция данной грани связана с димеризацией атомов вдоль направления <110> с образованием сверхструктуры (1 \times 2). В следующей атомной плоскости (001), отстоящей от предыдущей на расстоянии a/4, направление димеризации изменяется на 90° и на ней формируется сверхструктура (2 \times 1). Если поверхность содержит ступени моноатомной высоты, то соседние террасы имеют разные сверхструктуры (2 \times 1) и (1 \times 2), а при высоте ступеней a/2 на всех террасах формируется одинаковая сверхструктура (1 \times 2) или (2 \times 1). На дифракционных картинах от атомно-чистой поверхности кремния (001), независимо от высоты ступеней, наблюдаются, как правило, рефлексы, свидетельствующие о наличии сверхструктурных доменов обоих типов: (1 \times 2) и (2 \times 1).

По данным СВВ ОЭМ при T>800°C в процессе сублимации наблюдается перемещение ступеней. Обнаружено, что если нагрев кристалла осуществляется переменным током, то на чистой поверхности формируется система эквидистантно расположенных моноатомных ступеней, которые двигаются в процессе сублимации без изменения расстояния между ними. Террасы между ступенями имеют попеременно светлый и темный контраст (рис. 6, а), что обусловлено чередованием сверхструктур (1×2) и (2×1) при высоте ступеней a/4. Сублимация кристалла при нагреве образца постоянным током при T>900°C приводит к попарному сближению моноатомных ступеней. Минимальное расстояние ступеней в паре достигает 0,1 мкм при среднем расстоянии 0,5—2 мкм в эквидистантной системе. При этом в зависимости от направления постоянного тока, греющего кристалл, относительно направления ступеней в процессе сублимации почти вся поверхность имеет сверхструктуру (1imes2) или (2imes1), а участки между ступенями в паре характеризуются сверхструктурой соответственно (2×1) или (1×2) (рис. 6, б, в) [11].

Переход от одного типа поверхности к другому происходит при смене полярности постоянного тока или нагреве переменным током и является обратимым. Для любого направления постоянного тока при температурах менее 900°С устойчива система эквидистантно расположенных ступеней с чередующимися сверхструктурами (1×2) и (2×1) на террасах.

С помощью СВВ ОЭМ обнаружены свидетельства анизотропии поверхностной диффузии на грани (001), что обусловлено различной ориентацией димеров в сверхструктурных доменах разного типа. Этот вывод следует из наблюдений асимметрии формы двумерных островков сублимации на данной поверхности (рис. 7). Островок имеет форму эллипса (отношение величин малой и большой осей составляет 0,7— —0,8), при этом большая ось эллипса перпендикулярна ориентации димеров сверхструктуры на дне островка.

Рис. 6. ОЭМ-изображения поверхности кремния (001), полученные в сверхструктурном рефлексе (1×2) при направлении пучка электронов (110). Нагрев кристалла осуществлялся переменным током (а) и постоянным током, при этом направление тока противоположно (б) или совпадает (в) с направлением движения ступеней при сублимации

Рис. 7. ОЭМ-изображение поверхности кремния (001), содержащей источник двумерных островков сублимации

Рис. 8. ОЭМ-изображение поверхности кремния (111), содержащей двумерные островки роста

Изучение начальных стадий гомоэпитакски кремния. Получение тонких полупроводниковых пленок с заданной толщиной методом молекулярно-лучевой эпитаксии требует определения скорости роста с высокой степенью точности. Предложен способ определения скорости роста пленок [12], основанный на измерении периода осцилляций интенсивности зеркально отраженного от ростовой поверхности электронного пучка в процессе эпитаксии, что в свою очередь связывается с периодическим изменением микрорельефа поверхности при двумерном механизме зарождения и роста. Однако данный способ нуждается в экспериментальном подтверждении методами, позволяющими визуализировать такие элементы структуры ростовой поверхности, как моноатомные ступени, двумерные островки. Поэтому исследовались начальные стадии гомоэпитаксиального роста пленок кремния в плоскости (111) методом ОЭМ [13].

Процесс гомоэпитаксии сопровождался перемещением моноатомных ступеней в сторону более низких террас при $T > 830^{\circ}$ С и потоке атомов кремния на поверхность $2 \cdot 10^{14}$ см⁻². Это соответствует ступенчато-слоевому механизму роста за счет диффузии адатомов по террасе и встраивания их в моноатомную ступень. Исследования показали, что существует критический поток атомов, определяемый температурой подложки и шириной террас между моноатомными ступенями, при увеличении которого наблюдается формирование на террасах островков роста. При напылении кремния на исходную поверхность наблюдалось формирование островков роста на террасах между моноатомными ступенями (рис. 8). Осаждение кремния на поверхность с островками роста увеличивает размеры островков, при этом отдельные близкорасположенные островки сливаются. При дальнейшем напылении кремния наблюдается объединение островков между собой и моноатомными ступенями таким образом, что формируется пленка с толщиной, равной высоте островков роста. Отсутствие контраста в местах соединения островков роста с моноатомной ступенью указывает на то, что эти островки являются двумерными, а пленка имеет толщину, равную межплоскостному расстоянию (111).

В дальнейшем процесс роста сопровождается циклическими изменениями микроморфологии поверхности, обусловленными формированием и последующим увеличением размеров двумерных островков роста. Измерение интенсивности зеркального отражательного электронного пучка в процессе роста при условиях формирования двумерных островков роста позволило регистрировать периодическое изменение интенсивности . Период одной OCцилляции интенсивности соответствует росту одного монослоя, что согласуется с моделью, предложенной в [12]. Изменение потока атомов на поверхность приводит к соответствующему изменению периода осцилляции интенсивности.

Размер двумерных островков уменьшается, а плотность соответственно увеличивается при понижении температуры подложки. Вблизи моноатомной ступени всегда сохраняются свободные от островков кремния зоны, которые увеличивают свою ширину при увеличении температуры подложки. Следовательно, моноатомная ступень является эффективным стоком для адатомов в пределах области поверхности, ширина которой пропорциональна диффузионной длине адатома. Из зависимости ширины зон, свободных от двумерных островков, от температуры, следует, что величина энергии активации поверхностной диффузии составляет ~1,36±0,2 эВ.

ЛИТЕРАТУРА

1. Молекулярно-лучевая эпитаксия как метод создания модулированных полупроводниковых структур/И.Г.Неизвестный, А.В.Ржанов, С.И.Стенин, В.Н.Шумский.— В кн.: Проблемы кристаллографии, М.: Наука, 1987, с. 190—215. 2. O t a Y. Silicon molecular beam epitaxy.— Thin Solid Films, 1983, vol. 106, p. 1—136.

3. А с е е в А.Л., Л а т ы ш е в А.В., С т е н и н С.И. Изучение структурных перестроек на атомарно-чистой поверхности полупроводников с помощью сверхвысоковакуумной отражательной электронной микроскопии. — В кн.: Проблемы электронного материаловедения, Новосибирск: Наука, 1986, с. 109—127.

4. Reflection electron microscopy of clean and gold deposited (111) silicon surfaces/N.Osakabe, Y.Tanishiro, K.Yagi, G.Honjo.— Surf. Sci., 1980, vol. 97, p. 393—408.

5. Бартон В., Кабрера Н., Франк Ф. Рост кристаллов и равновесная структура их поверхностей. — В кн.: Элементарные процессы роста кристаллов. — М.: Иностранная литература, 1959, с. 10—109.

6. LeenwenC., RosmalenR., BennemaP. Simulation of step motion on crystal surfaces.— Surf. Sci., 1984, vol. 44, p.213—236.

7. Чернов А.А. Современная кристаллография.— М.: Наука, 1980, т. 3, с. 7—230.

8. S c h w o e b e l R.N., S h i p s e y E.J. Step motion on crystal surfaces.— J. Appl. Phys., 1966, vol. 37, p. 3682—3686.

9. Поведение моноатомных ступеней на поверхности кремния (111) при сублимации в условиях нагрева электрическим током/А.В.Латышев, А.Л.Асеев, А.Б.Красильников и др.— Докл. АН СССР, 1988, т. 300, с. 84—88. 10. Коwanami H., Hatayama A., Hayashi Y.

10. K o w a n a m i H., H a t a y a m a A., H a y a s h i Y. Antiphase boundary of GaAs films grown on Si (001) substrate by MBE.— J. Electr. Materials, 1988, vol. 17, p. 341—349.

11. Влияние электрического тока на соотношение площадей доменов (2×1) и (1×2) на чистой поверхности кремния (001) в процессе сублимации/А.В.Латышев, А.Б.Красильников, А.Л.Асеев, С.И.Стенин.— Письма в ЖЭТФ, 1988, т. 48, вып. 9, с. 484—487.

12. N e a v e J.H., D o b s o n P.J., J o y c e B.A. Reflection high-energy electron diffraction oscillations from vicinal surfaces — a new approach to surface diffusion measurements.— Appl. Phys. Lett., 1985, vol. 47, p. 100—102.

13. Initial stages of silicon homoepitaxy studied by in situ reflection electron microscopy/A.V.Latyshev, A.L.Aseev, A.B.Krasilnikov, S.I.Stenin.— Phys. Stat. Sol.(a), 1989, vol. 113.

Статья поступила 1 февраля 1989 г.

лическом кремнии. Даны анализ микроструктуры дефектов и сведения об энергетическом спектре локальных электронных состоячий, связанных с различными типами дефектов в объеме и на поверхности кристаллов кремния. Рассказано о процессах миграции дефектов, их взаимодействии друг с другом и с примесями.

Для физиков и инженеров, занятых фундаментальными исследованиями и решением практических задач современной кремниевой микроэлектроники.

МЕТОД УПРУГОГО РАССЕЯНИЯ СВЕТА В ДИАГНОСТИКЕ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

мл.науч.сотр. С.Е.Заболотский, канд.физ.-мат.наук В.П.Калинушкин, науч.сотр. Д.И.Мурин, М.Г.Плоппа

УДК 535.36

Высокая чувствительность метода упругого рассеяния света позволяет проводить объемные исследования кристаллического совершенства полупроводниковых материалов.

Явление упругого рассеяния света вследствие наличия в кристалле неоднородностей (дислокаций преципитатов, флуктуаций концентрации свободных носителей) может использоваться для анализа дефектов в полупроводниковых материалах [1—5]. В качестве зондирующего излучения применяется свет ближнего ИК диапазона (обычно $\lambda_{30H} \leqslant 1$ мкм). Для исследования электрически активных неоднородностей (а именно такие дефекты представляют наибольший практический интерес в полупроводниковых материалах) целесообразно использовать свет с большей длиной волны, например, излучение лазеров на СО₂ и СО с длиной волны 10,6 и 5,4 мкм соответственно.

В основе метода лежит определение двух параметров — зависимости интенсивности рассеяния света (*I*_{pac}) от угла рассеяния Θ и величины абсолютной интенсивности рассеяния (*I*_{aбc}).

Рассеянный свет направляется на фотоприемник зеркалом (рис. 1). Это зеркало перемещается перпендикулярно зондирующему лучу, что позволяет снимать угловую зависимость /рас (диаграмму рассеяния). Диаграмма снимается под малыми углами — примерно до 10° (при пересчете на углы в кристалле). Для повышения чувствительности приемной системы используется гетеродинный метод приема [6].

Формулы, связывающие угловую зависимость I_{pac} с размером неоднородностей а и распределением примеси (профильная функция f(r, a)), приведены в [7, 8]. По форме диаграммы можно судить о виде профильной функции и определить размер рассеивающих неоднородностей, затем, измеряя абсолютную интенсивность рассеяния, определить произведение концентрации неоднородностей на квадрат максимального отклонения диэлектрической проницаемости в них — $C \cdot \varepsilon^2 m$.

Однако если неоднородности в кристаллах не имеют сферической симметрии, требуются дополнительные эксперименты по исследованию влияния ориентации образца на рассеяние им света для определения формы, размеров рассеивающих неоднородностей. В случае наличия в кристалле неоднородностей с различными формами, размерами и ориентацией (такая ситуация реализуется, например, для Si, выращенного методом Чохральского), невозможно определить размер рассеивающих неоднородностей, можно лишь сделать некую оценку «среднего» размера. Таким образом, интерпретация результатов, полученных с помощью рассматриваемого метода, во многих случаях может вызвать серьезные затруднения.

К недостаткам данного метода следует отнести не очень высокую информативность: получаемая информация сводится в основном только к размерам, форме и величине $C \varepsilon^{2m}$ рассеивающих неоднородностей. Для определения же их природы необходимо привлечение других методов, дополнительные эксперименты с использованием высокотемпературных термообработок, диффузии и т.д.

К достоинствам метода упругого рассеяния света относятся его высокая чувствительность и возможность исследования неоднородностей в объеме кристалла, не подвергая их сильным внешним воздействиям, что позволяет эффективно использовать эту технику для картирования подложек и целых полупроводниковых слитков [8]. Следует также отметить сравнительно низкую стоимость необходимого оборудования и высокую экспрессность экспериментов.

Использование рассеяния света с большими длинами волн при сохранении вышеупомянутых достоинств метода, основанного на упругом рассеянии света, позволяет существенно увеличить его возможности при исследовании неоднородностей в полупроводниках.

Из формул, приведенных в [7, 8], следует, что если отклонение диэлектрической проницаемости не зависит или слабо зависит от длины волны, то /_{рас} быстро падает (пропорционально четвертой степени длины волны). Как правило, все дефекты кристаллической решетки, поля упругих напряжений вокруг них, скопления нейтральных примесей имеют диэлектрическую проницаемость, не зависящую от длины волны. В том же случае, если в полупроводнике имеются области с повышенной (или пониженной) концентрацией свободных носителей, изменение диэлектрической проницаемости этих областей пропорционально отклонению концентрации свободных носителей в этой области $(n-n\infty)$ и квадрату длины волны рассеиваемого света.

Так как $l \sim \epsilon^2$, то интенсивность рассеяния на скоплениях свободных носителей не будет зависеть от длины волны. Следовательно, при увеличении длины волны интенсивность рассеяния практически всеми дефектами в кристалле будет быстро падать, а на скоплениях свободных носителей меняться не будет. Поэтому увеличение длины волны зондирующего излучения делает эту методику чувствительной к присутствию в кристаллах областей с повышенной концентрацией носителей тока.

В кристаллах Si, выращенного методом Чохральского, и в полуизолирующем GaAs на длинах волн ~ 1 мкм доминирует рассеяние на дефектах с не зависящим от длины волны $\Delta \widetilde{\varepsilon}$, а на длинах волн 5—10 мкм начинает проявляться рассеяние на скоплениях свободных носителей. На рис. 2 представлены диаграммы рассеяния для кристалла Si, выращенного методом Чохральского, снятые на различных длинах волн.

Интенсивность рассеяния на длинах волн 5,4 и 10,6 мкм совпадает, а на длине волны 1,15 мкм — существенно больше. Это свидетельствует о том, что на длинах волн 5,4 и 10,6 мкм наблюдаются с помощью рассеяния света скопления свободных носителей, а на длине волны 1,15 мкм — дефекты, $\Delta\epsilon$ которых не зависит от длины волны зондирующего света. На основании этих диаграмм можно получить информацию о проводимости в различных областях анализируемого кристалла. Чувствительность метода 10¹⁵ см⁻³.

Рис. 1. Схема метода упругого рассеяния

O-образец, Д
 — днафрагма, ФД
 — фотодетектор, Э
 — экран, З
 — зеркало

Рис. 2. Диаграммы рассеяния кремния, выращенного методом Чохральского, снятые на трех длинах волн: λ =10,6 мкм (1); 5,4 (2); 1,15 (3)

Рис. 3. Температурные зависимости интенсивности рассеяния кристаллов Si и Ge (охлаждение)

Увеличение длины волны рассеиваемого света позволяет решить еще одну важную проблему – уменьшить влияние микрорельефа поверхности на рассеяние света, так как интенсивность рассеяния на нем самом также будет падать ($\sim 1/\lambda^4$).

Существенную информацию о природе наблюдаемых по рассеянию света дефектов может дать изучение влияния температуры образца на *І*рас. Действительно, если неоднородность представляет собой скопление носителей, которые образуются в

областях с повышенной концентрацией примесей за счет их ионизации, то поскольку степень ионизации примесей при изменении температуры будет меняться, будет меняться и концентрация носителей n в скоплениях. Соответственно ($\sim n^2$) будет изменяться и интенсивность рассеяния; так как рассеяние света такими дефектами, как преципитаты и их колонии, дефекты структуры (типа дислокаций и Свирл-дефектов), микрорельеф поверхностей и т.д. практически не зависит от температуры, то температурная зависимость интенсивности рассеяния может использоваться для анализа состава примесных скоплений и определения энергии ионизации входящих в состав скоплений центров.

На рис. З приведена температурная зависимость $I_{\rm pac}$ кристаллами Ge и Si. Для каждого кристалла имеется характерный интервал температур, при которых происходит спад интенсивности рассеяния. Методы обсчета температурных зависимостей концентраций носителей разработаны [9, 10] и применимы к обработке результатов по исследованию температурной зависимости $I_{\rm pac}$. Однако точность определения энергии термической активации только по температурным зависимостям $I_{\rm pac}$ оказывается невысокой. Так, в случае Si оценка энергии ионизации ΔE даст величину 0,14—0,18 эВ, а для Ge — 0,24—0,13 эВ. Видно, что ошибка в случае Ge

достаточно велика. Это связано с тем, что из экспериментов по рассеянию света определяется не абсолютное значение концентрации носителей тока, а значение комбинации Cn^2 . Так как *C* неизвестно, то неизвестно и *n*. Это в свою очередь существенно усложняет анализ кривых. Если же из независимых экспериментов известно *C* (как в случае Si), это приводит к резкому повышению точности оценки ΔE . Рассмотренные виды анализа применимы в случае сравнительно мелких центров, степень ионизации которых существенно меняется в интервале температур до 300°К. В то же время в полупроводниковых материалах (и особенно в ма-

териалах группы А В) имеется большое количество глубоких центров, для анализа которых в течение длительного времени использовались термостимулированные процессы (например, термостимулированный ток и люминесценция [9]). На рис. 4, 5 приведены температурные зависимости Ірас, снятые при нагреве кристаллов GaAs, легированного Cr и InP, легированного Fe от ~100 до 300°К с предварительным освещением светом при низких температурах. Механизм возникновения пика рассеянного света аналогичен механизмам термостимулированного тока. Положение этого пика и его смещение в результате изменения скорости нагрева позволяют определять энергии активации глубоких центров входящих в состав скоплений. Например, для InP:Fe и GaAs:Cr ΔE~0,4—0,5 эВ.

С помощью упругого рассеяния света могут быть выявлены крупномасштабные центры рекомбинации. Если такие центры имеются в кристалле и в нем создается (например с помощью фотовозбуждения) некая концентрация неравновесных носителей, то вокруг этого дефекта возникает область с пониженной концентрацией носителей, которую можно зафиксировать с помощью рассеяния света. В случае импульсного возбуждения носителей возможен режим, когда регистрируется рассеяние света, только связанное с дефектами — центрами рекомбинации. Действительно, при импульсном фотовозбуждении носителей разность $n-n\infty$ будет меняться, т.е. осуществляется импульсная модуляция є дефектов, являющихся центрами рекомбинации, и соответственно будет модулироваться и интенсивность рассеяния света этими дефектами.

Если выделить эту переменную составляющую, то будет регистрироваться рассеяние только этими дефектами. Из приведенных диаграмм рассеяния Si, полученного методом Чохральского без фотовозбуждения и с импульсным фотовозбуждением носителей (в последнем случае регистрируется рассеяние только центрами рекомбинации), видно, что центрами рекомбинации являются относительно мелкие дефекты (а~2 мкм).

Снятие диаграмм до и после обработки при 1150°С (рис. 6) подтверждает этот вывод, так как характер рассеяния без фотовозбуждения изменяется мало, а при импульсном фотовозбуждении *І*_{рас} увеличивается на два порядка.

Такая методика позволяет выявлять дефекты непосредственно в подложках в процессе технологического цикла, так как наносимый на рабочую поверхность в процессе технологического процесса рисунок будет давать постоянный фон, который просто не будет регистрироваться.

Таким образом, описанный выше метод упругого рассеяния света ИК диапазона может быть достаточно эффективным, а для ряда материалов и уникальным методом определения однородности полупроводниковых материалов, выявления и исследования крупномасштабных электрически активных дефектов. Информативность метода может быть резко повышена, если наряду с совершенствованием техники температурных измерений использовать эксперименты по влиянию электрического и магнитных полей, давления и т.д. На имеющихся установках можно проводить исследование всех полупроводниковых материалов, прозрачных в области 10 мкм (к таким относятся практически все важнейшие полупроводниковые материалы —

Si, Ge, GaAs и др.). Исследуемые образцы должны иметь форму пластин с полированными с оптической точностью поверхностями (для экспериментов по выявлению центров рекомбинации это требование может быть частично снято). Допускается любая форма пластины, минимальная площадь $\sim 1 \text{ сm}^2$, ограничений на максимальные размеры нет. Могут исследоваться кристаллы с максимальной концентрацией носителей $\sim 10^{18} \text{ сm}^{-3}$. Ограничений на минимальную концентрацию носителей нет. Установки связаны с ЭВМ, что позволяет проводить сканирование и картирование образцов, а время снятия и обработки одной диаграммы составляет $\sim 7-10$ мин. Стандартные эксперименты могут проводиться оператором средней квалификации.

Эксперименты по выявлению центров рекомбинации могут производиться в настоящее время с

Si и Ge, ограничение связано с необходимостью подбора лазеров, обеспечивающих объемную генерацию носителей тока, использовались лазеры на $CaF_2:Dy^{2+}$ ($\lambda=2,36$ мкм) — для Ge и лазер на $YAG:Nd^{3+}$ ($\lambda=1,06$ мкм) — для Si. Подробно эта методика и полученные с ее помощью результаты описаны в [8, 10—13].

ЛИТЕРАТУРА

1. Rick L.M., White W.B., Spear K.E. Average specle size in small-angle light scattering.— J. Cryst. Growth. 1975, vol. 28, p. 240—248. 2. Рыскин В.С., Бетехнин В.И., Слуцкер А.И.

2. Рыскин В.С., Бетехнин В.И., Слуцкер А.И. Обнаружение субмикроскопических трещин в подверженных нагружению кристаллах каменной соли. — ФТТ, 1973, т. 15, вып. 11, с. 3420—3422. 3.Блистанов А.А., Вишняков В.И., Порт-

3. Б л и с та н о в А.А., В и ш н я к о в В.И., П о р тн о в О.Г. Рассеяние света с λ =1,15 мкм кристаллами Si, выращенными методом Чохральского. З симпозиум по процессам роста и синтеза полупроводниковых кристаллов и пленок.-Новосибирск, 19—20 июня 1975.- Новосибирск, 1982, с. 273.

4. M o r i y a K., O g a w a T. Direct observation of dislocation in GaP by light scattering.— J. Cryst. Growth, 1978, vol. 44, p. 53—60.

5. O g a w a T. A Three dimensional study on dislocation lines in an In-doped GaAs crystal by layer-by-layer tomography.— J. Cryst. Growth, 1989, vol. 96, p. 777—784.

6. Хирд Г. Измерение лазерных параметров. — М.: Мир, 1970. — 593 с.

7. Ванде Хюлст Г. Рассеяние света малыми частицами. — М.: ИЛ, 1961.— 623 с.

8. Калинушкин В.П. Исследование примесных дефектов в полупроводниках методом малоуглового рассеяния лазерного излучения ИК-диапазона. — Труды ИОФАН, т. 4, 1986, с. 3—59.

9. Милнски с К. Примеси с глубокими уровнями в полупроводниках. М.: Мир, 1977. 552 с.

10. Рассеяние ИК лазерного излучения — метод исследования локальных неоднородностей в чистых полупроводниках/В.В.Воронков, Г.И.Воронкова, Б.В.Зубов и др.— ФТТ, 1981, т. 23, вып. 1, с. 117—126.

11. Влияние операций геттерирования на скопления электрически активных примесей в кремнии, выращенном методом Чохральского/Э.Н.Гулидов, В.П.Калинушкин, Д.И.Мурин и др.— Микроэлектроника, 1985, т. 4, вып. 2, с. 130—133.

12. Определение параметров точечных центров, образующих слабые примесные скопления в полупроводниковых материалах/С.Е.Заболотский, В.П.Калинушкин, Д.И.Мурин и др.— ФТП, 1987, т. 21, вып. 8, с. 1364—1368.

13. Влияние быстродиффундирующих примесей на малоугловое рассеяние света/А.В.Батунина, Г.И.Воронкова, В.В.Воронков и др. — ФТП, 1988, т. 22, вып. 7, с. 1308—1311.

Статья поступила 11 сентября 1989 г.

УДК 621.385.833

КАТОДОЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ МАТЕРИАЛОВ И ИЗДЕЛИЙ МИКРОЭЛЕКТРОНИКИ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

канд.физ.-мат.наук, ст.науч.сотр. М.Н.Филиппов, Н.Н.Кинаев, мл.науч.сотр. В.Л.Познянский, науч.сотр. А.Г.Сычев, Л.В.Логинов

Катодолюминесцентный микроанализ (КЛМА) при температурах 10—20 К перспективен при исследовании полупроводниковых материалов (Si, GaAs, InSb и других) и особенно в изучении электрофизических характеристик высокотемпературных сверхпроводников. Снижение температуры значительно улучшает предельные характеристики, селективность и достоверность КЛМА.

В основу метода положена зависимость характеристик возбуждаемого оптического излучения от химического состава исследуемого объекта. Предел обнаружения порядка 10¹⁴ ат.см⁻³ [1], что на 4—5 порядков лучше, чем в случае рентгеноспектрального микроанализа.

Для определения химического состава образца по измерению КА характеристик может использоваться излучение в диапазоне от 0,15 до 12 мкм, возбуждаемое электронным пучком с энергией от 0,5 до 100 кэВ. Как правило, установки для КАМА реализуются на основе растровых электронных микроскопов (РЭМ) или рентгеновских микроанализаторов. В этом случае имеется возможность получать информацию из локальной области с линейным размером в несколько микрон и одновременно наблюдать исследуемый участок на электронном микроскопе. Основные варианты конструкций таких комплексных приборов описаны в работе [1]. При измерениях можно регистрировать как интенсивность КЛ сигнала во всем регистрируемом спектральном диапазоне, так и записывать спектр излучения.

Несмотря на уникальные значения предела обнаружения, развитие КЛМА сдерживается по причинам принципиального характера: во-первых, величина сигнала определяется совокупностью процессов и не связана однозначно с химическим составом исследуемого образца; во-вторых, структура КЛ спектров не обеспечивает достаточной селективности анализа; в-третьих, на многих практически важных материалах наблюдается сильный локальный перегрев анализируемого микрообъема; в-четвертых, многие практически важные материалы (например, кремний) при комнатных температурах не обнаруживают заметной КЛ, вследствие чего в обычных условиях КЛМА основного материала современной микроэлектроники невозможен.

Трудности, возникающие при КЛМА, обусловлены конкретными значениями тепло- и электрофизических параметров и рекомбинационных механизмов, характерных для объектов, находящихся при комнатных температурах. Охлаждение исследуемого образца до температур 10—40 К изменяет эту ситуацию и открывает принципиально новые возможности.

Интенсивность примесной КЛ на большинстве материалов (GaAs, InSb, Si и др.) при понижении температуры до 10—20 К увеличивается на 1—3 порядка. Это происходит из-за уменьшения вероятности безызлучательных переходов.

С уменьшением температуры значительно сужаются спектральные линии [1, 2], что приводит к улучшению селективности КЛМА.

Эти факторы позволяют улучшить пределы обнаружения приблизительно на порядок. В частности, понижение температуры до 77 К (жидкий азот) уже позволяет уверенно идентифицировать многие примеси в GaAs [2].

Наиболее существенное влияние на метрологические характеристики КЛМА оказывает особенность температурного хода фононной компоненты теплопроводности. При снижении температуры кристаллического объекта до 10-40 К (в зависимости от конкретного материала) происходит изменение механизма рассеяния фононов. В результате вымораживания процессов переброса и увеличения длины свободного пробега фонона до размеров кристалла на температурной зависимости коэффициента теплопроводности наблюдается максимум [3]. Для большинства практически важных материалов этот рост составляет 2—3 порядка. В результате этого теплопроводность полупроводников при гелиевых температурах превосходит или сравнима с теплопроводностью типичных металлов при комнатной температуре. В этом случае отсутствует заметный перегрев области анализа и даже может быть повышена токовая нагрузка. Указанное яв-— общее для неорганических кристалление лических материалов. Переход к КЛМА при температурах образца 10—40 К снимает ограничения

для полупроводников с малой концентрацией свободных носителей.

Снижение температуры, кроме того, в целом улучшает спектральные характеристики и позволяет расшифровывать оптические переходы с участием мелких уровней. Таким образом, при снижении температуры объекта основные метрологические параметры КЛМА (предел обнаружения, селективность, достоверность) улучшаются.

При снижении температуры исследуемого объекта возникают новые возможности использования для локальной диагностики специфических низкотемпературных явлений, например, образования связанных на примесях экситонов в чистых полупроводниках и высокотемпературной сверхпроводимости.

При температурах в несколько кельвин в спектре КЛ кремния наблюдаются серии узких линий [4], происхождение которых обусловлено рекомбинацией связанных на примесях экситонов. Спектральное положение этих линий определяется энергией связи экситон-примесь, которая в свою очередь однозначно зависит от типа примеси (правило Хейнса) [4], т.е. положение линии однозначно определяет тип примеси. По интенсивности линии в определяет тип примеси. По интенсивности линии в определенных условиях могут быть сделаны выводы о количественном содержании примеси. При таких условиях КЛМА становится методом локального элементного анализа, в то время как при обычных температурах он по существу является молекулярным анализом.

КАМА при низких температурах весьма перспективен для исследования высокотемпературных сверхпроводников (ВТСП). Их люминесцентные свойства во многом сходны с полупроводниками [5]. В частности, резкое изменение характеристик КЛ при фазовом переходе в сверхпроводящее состояние [5] позволяет контролировать электрические процессы в устройствах криоэлектроники на основе 1 ВТСП-материалов Связь некоторых спектральных линий с концентрацией кислорода позволяет надеяться на возможность разработки соответствующей методики локального КАМА ВТСП-материалов.

Преимущества охлаждения объекта отмечались давно [1, 2], однако переход к гелиевым температурам в КЛМА представляет собой сложную экспериментальную задачу, не имеющую до настоящего времени общепринятого решения. В литературе описан ряд установок, предназначенных для экспериментов при температуре жидкого гелия, однако это уникальные специализированные приборы, требующие, как правило, коренной реконструкции прибора. Кроме того, в этих работах исследовались структурные неоднородности и электрофизические параметры материалов.

Требования к экспериментальной установке, предназначенной для локального химического анализа, существенно отличаются. При ее создании должны быть обеспечены: максимальное уменьшение скорости роста пленки и поверхностных загрязнений; учет теплового воздействия электронного зонда и сведение к минимуму внешних тепловых потоков; оптимальный сбор и вывод КЛ излучения в широком спектральном диапазоне; возможность перемещения охлажденного образца по двум координатам; создание системы сбора и обработки данных, ориентированной на специфику химического анализа.

В криогенном катодолюминесцентном микроанализаторе (см. рисунок), созданном на базе серийного РЭМ «JSM-U3» (Япония) эти задачи в основном были решены. Специальный криостат разработан в виде отдельной приставки, которая может быть использована на приборах других марок. Весь процесс измерения автоматизирован на базе ЭВМ «PDP 11/05», для которой создан пакет прикладных программ.

В криостате в качестве хладагента применяется жидкий гелий, помещаемый в резервуар емкостью 4 л. Резервуар с гелием окружен теплозащитным экраном, внутри которого находится жидкий азот. Конструкция криостата рассчитана на поддержание температуры около 10 К в течение 1 ч без добавки хладагента и замены образца.

Оптический спектрометр создан на основе дифракционного монохроматора ММ/101 (СССР). Непосредственно на корпусе монохроматора установлен блок фотоприемников, в корпусе которого помещены широкополосный усилитель (для работы в режиме счета фотонов) и согласующий интегрирующий усилитель (для работы в ИК диапазоне спектра). При разработке спектрометра монохроматор был автоматизирован: поворот дифракционной решетки осуществляется шаговым двигателем, управляемым от ЭВМ или в ручном режиме. Для сбора КЛ излучения и вывода его на входную щель монохроматора использован эллипсоидальный объектив-концентратор. Такая система является практически бездисперсионной. Единственным элементом, оптические свойства которого зависят от длины волны КЛ излучения, является выходное окно, выполненное из монокристалла CaF2, обладающего прозрачностью от УФ диапазона до среднего ИК диапазона. Предлагаемая конструкция системы вывода излучения применима в диапазоне от 0,2 до 10000 нм. Широкий набор дифракционных решеток (шаг от 75 штрихов/мм до 1200 штрихов/мм) в принципе перекрывает этот диапазон. В видимой области в качестве фотоприемников используются фотоумножители ФЭУ 136, ФЭУ 106 и ФЭУ 62, работающие в режиме счета отдельных фотонов. Для улучшения счетных характеристик предусмотрена возможность охлаждения фотоумножителей жидким азотом. Для ближнего и среднего ИК диапазона в качестве фотоприемника использованы фоторезисторы на основе InSb, охлаждаемые жидким азотом. Аналоговый сигнал, поступающий с выхода такого фотоприемника, преобразуется в последовательность импульсов, частота которых пропорциональна амплитуде аналогового сигнала. Такое преобразование позволяет использовать единый тракт регистрации и обработки сигнала как в видимом диапазоне, так и в ИК диапазоне спектра. Основной трудностью совмещения зеркальной системы сбора и вывода КЛ излучения с монохроматором являются независимые вибра-

Установка для КЛМА при температуре жидкого гелия

ции колонны микроскопа и монохроматора. В данной установке эта задача решена так же, как и в случае криостата. Монохроматор установлен на юстировочном столике с тремя степенями свободы, который в свою очередь жестко связан с колонной микроскопа. Таким образом, система охлаждения, колонна микроскопа, монохроматора образуют жестко связанную механическую систему, где исключены независимые вибрации.

Требования к системе регистрации и обработки данных, предназначенной для микроанализа, отличаются от требований, которые предъявляются к аналогичным системам для определения электрофизических параметров или дефектности материала. Для проведения КЛМА важно иметь возможность проведения многократных измерений при определенном положении спектрометра, быстрой установки спектрометра и т.п. Дополнительные ограничения обусловлены необходимостью проведения КЛМА при гелиевых температурах. Время набора данных в точке не должно превышать 1 мин, время перестройки спектрометра — не более нескольких секунд. Эти требования осуществимы только при полной автоматизации процесса измерений. С этой целью управление монохроматором осуществляется с помощью ЭВМ «PDP 11/05», для которой создан специальный пакет прикладных управляющих и измерительных программ, полностью обеспечивающих потребности КЛМА. Программы составлены таким образом, что от оператора не требуется знания программирования. Вся работа происходит в диалоговом режиме.

Пакет программ обеспечивает следующие измерительные операции: установку спектрометра в заданное положение; измерение интенсивностей КЛ излучения при заданном положении в течение заданного интервала времени; снятие спектра КЛ излучения в заданном спектральном интервале; ав томатический поиск максимума в заданном спектральном интервале и установку спектрометра в положение, соответствующее этому максимуму; измерение спектрального сдвига максимума КЛ излучения в серии последовательных измерений; измерение полуширины спектральной линии.

Полученные в результате этих измерительных операций первичные данные измерений обрабатываются с учетом спектральной зависимости чувствительности тракта регистрации. В памяти ЭВМ записывается эталонный спектр светоизмерительной лампы СИ8-200У с ленточным телом накала. Этот спектр используется для абсолютной калибровки тракта регистрации и учитывает изменения истинного спектра в результате поглощения в окнах, в воздушном пространстве, вследствие спектральной зависимости чувствительности фотоприемника.

Для удобства сопоставления все спектры (по желанию оператора) нормируются на интенсивность максимального пика. Отнормированные спектры, а также результаты измерений интенсивности КЛ при фиксированном положении спектрометра выводятся на экран дисплея и принтер (спектр выводится в режиме квазиграфики). Для серии измерений вычисляются статистические параметры: среднее стандартное отклонение и дисперсия.

ЛИТЕРАТУРА

1. С пивак Г.В., Петров В.И., Антошин М.К. Локальная катодолюминесценция и ее возможности для исследования зонной структуры твердых тел.— Успехи физических наук, 1986, т. 148, вып. 4, с. 599—717.

2. Петров В.И. Локальная катодолюминесценция полупроводниковых структур оптоэлектроники. По-

верхность, Физика, химия, механика, 1988, № 10, с. 5 20. 3. Могилевский Б.М., Чудновский А.Ф. Теплопроводность полупроводников.— М.: Наука, 1972.— 536 с.

4. Люминесценция многочастичных экситон-примесных комплексов в кремнии и ее использование для определения примесного состава/А.С.Каминский, Н.В.Алкеев Г.И.Воронкова, Я.Е.Покровский.— Изв. АН СССР, сер. физическая, 1978, т. 42, № 6, с. 1170—1174.

5. Люминесценция металл—диэлектриков У₁Ва₂Си₃О7 с бидырочной сверхпроводимостью/Ч.Б.Лущик, И.Л.Куусман, Э.Х.Фельдбах и др.— Физика твердого тела, 1987, т. 29, № 12, с. 3667—3672.

Статья поступила 14 августа 1989 г.

УДК 621.385.833

АТТЕСТАЦИЯ ПЕРИОДИЧЕСКИХ СТРУКТУР С ИСПОЛЬЗОВАНИЕМ ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛН

канд.физ.-мат.наук,ст.науч.сотр. С.А.Иноземцев, канд.физ.-мат.наук В.А.Куликов, д-р физ.-мат.наук Ю.А.Матвеев, канд.техн.наук В.П.Савельев, В.В.Тимашев, ст.науч.сотр. В.Н.Федорец

Предлагается аттестовывать периодические структуры для поверки и калибровки оптических и растровых электронных микроскопов с помощью поверхностных акустических волн (ПАВ). Наличие резонансного взаимодействия ПАВ с периодической структурой при соизмеримости ее периода с длиной волны позволяет проводить аттестацию периодической структуры на основании измерений центральной частоты полосы режекции. Все необходимые измерения могут проводиться на серийной аппаратуре, обеспеченной средствами метрологической поверки.

Переход к проектным нормам менее 1 мкм в технологии изготовления полупроводниковых приборов ужесточает требования к точности линейных измерений топологии структур на фотошаблонах и подложках. При использовании для контроля размеров современных оптических (OM) и растровых электронных микроскопов (РЭМ) все более очевидной становится необходимость работы с видеосигналами, формируемыми в системах объективной визуализации структуры изображения контролируемого объекта [1]. При этом важно не только правильное определение точек на видеосигнале, расстояние между которыми соответствует размеру контролируемой структуры, но и точное измерение расстояния между этими точками. Можно использовать для подобных измерений специальные интерферометрические измерители, встроенные в микроскопы (например, в РЭМ ZRM-20 [2]). Однако широкое применение при контроле размеров на фотошаблонах и подложках находят приборы, измерительные системы которых базируются на аналоговых схемах, что делает необходимым их калибровку и периодическую поверку. Это относится к системам точной ориентации зонда на объекте в РЭМ ZRM-12, к развертке при визуализации образцов на экране ЭЛТ лабораторных РЭМ и увеличению оптических микроскопов с фотометрической регистрацией распределения освещенности в изображении объекта [3].

Для целей калибровки измерительных систем микроскопов предлагались различные варианты стандартных образцов. К ним относятся, например, латексные сферы, высаженные на подложку и запыленные золотом [4], или тест-объекты на основе лавсановых ядерных фильтров [5]. При этом аттестуемым параметром структур является средний диаметр сфер или пор в фильтре, который определяется технологией изготовления. Один из недостатков подобных тест-объектов — неопределенность в интерпретации видеосигналов от них на разных приборах, т.е. необходимость определения точек на видеосигнале, которым отвечает аттестованный диаметр сферы или поры. Кроме того, при калибровке ОМ с высокоапертурными объективами существенную роль в увеличении погрешности калибровки будет играть небольшая глубина резкости, сравнимая с диаметром сфер.

Более удобны для калибровки структуры типа периодической решетки с аттестованной величиной периода [6]. Это связано с простотой интерпретации видеосигнала от структуры с периодически повторяющимися элементами, когда периоду соответствует на видеосигнале расстояние между двумя соседними однотипными экстремумами или другими сходными точками на видеосигналах соседних полос, составляющих решетку. Для калибровки при измерениях в диапазоне увеличений 1000—

50000[×] необходимы решетки с периодом 10— 0,5 мкм, изготовление которых может базироваться на элементах планарной технологии, применяемой в электронной промышленности.

Освоенность необходимых при изготовлении тестовых периодических структур технологических приемов в отрасли может способствовать выпуску достаточного для обеспечения парка РЭМ и ОМ количества тест-объектов. Некоторые оценки потребности в них можно сделать, основываясь на том, что только парк РЭМ составляет ~1000 шт. [6].

Однако при организации производства тестобъектов типа периодических решеток необходимо обеспечить не только их изготовление, но и аттестацию.

По имеющимся литературным данным [6], наиболее последовательные работы по созданию аппаратуры для поверки периода решеток в микронном и субмикронном диапазоне размеров проведены на базе установки, включающей РЭМ в качестве средства визуализации, и лазерного интерферометрического измерителя. Но это пока не означает окончательного создания рабочего места поверителя и оснащения им территориальных или отраслевых метрологических служб.

В связи с изложенным можно сделать вывод, что в метрологии линейных размеров микронного и субмикронного диапазонов поиск альтернативных методов аттестации мер — важная и актуальная задача.

Одним из перспективных направлений в этой области является развитие методов, основанных на измерении параметров взаимодействия поверхностных акустических волн (ПАВ) с периодической решеткой, расположенной на полированной рабочей поверхности кристаллической подложки. Возможность применения и удобство таких методов базируется на ряде факторов. Во-первых, в настоящее время достаточно хорошо освоено возбуждение акустических волн в твердых телах с помощью электроакустических преобразователей [7], в частности, ПАВ различных типов в пьезоэлектрических, пьезополупроводниковых подложках и слоистых структурах с пленками пьезоэлектриков [8] в диапазоне частот до 1,5—2 ГГц, а в некоторых случаях и до 4-5,2 ГГц [9]. Во-вторых, скорость звука в твердых телах по существу зависит только от структуры твердого тела и направления распространения волны, и для кристаллов, плотность и упругие модули у которых хорошо воспроизводятся в условиях серийного производства (например, пьезокварц), может табулироваться с необходимой точностью (~2%) в виде стандартных справочных данных, таких как, например, постоянная решетки у мер, предназначенных для поверки просвечивающих электронных микроскопов [3]. В-третьих, в упомянутом диапазоне частот длина ПАВ составляет величину порядка 1 мкм, так как скорости ПАВ лежат в пределах от 2· 10⁵ до 7· 10⁵ см/с для наиболее распространенных материалов, и ПАВ такой длины эффективно рассеиваются на периодических решетках с таким же или кратным периодом [10]. В-четвертых, для кристаллов с оптически полированной поверхностью затухание ПАВ в этом диапазоне частот составляет единицы или десятки децибелл на сантиметр [11], т.е. волна может пройти через решетку, имеющую сотни полос, и быть зарегистрирована приемным преобразователем.

Таким образом, изменяя частоту волны в той области частот, для которых длина ПАВ примерно вдвое больше периода решетки [10], мы будем наблюдать область непрозрачности в частотном диапазоне, ширина которого определяется числом полос в решетке и коэффициентом отражения от одного элемента решетки. Регистрируя амплитудно-частотную характеристику (АЧХ) системы полос при приеме ПАВ, прошедшей через решетку, по характерным точкам режекции на АЧХ можно определить центральную частоту и, исходя из известного значения скорости ПАВ, определить (аттестовать) период такой решетки.

Наиболее просто такой метод реализуется при использовании пьезоэлектрической подложки, на которой ПАВ можно возбуждать и принимать встречно-штыревыми преобразователями (ВШП). В качестве пьезоэлектрической подложки могут использоваться прозрачные материалы (кварц, ниобат или тантал лития), что позволяет поверять с их помощью просвечивающие оптические микроскопы и такие материалы, как полуизолирующий арсенид галлия, что позволяет наблюдать периодическую систему такого объекта в растровом электронном микроскопе без нанесения дополнительных проводящих покрытий. Подложка для меры из полуизолирующего арсенида галлия может быть изготовлена на рабочих пластинах со структурами транзисторов или микросхем в качестве тестового элемента, что позволяет оперативно контролировать технологический процесс.

Такой способ был реализован в следующем объекте: подложка из полуизолирующего арсенида галлия марки АГЧП-5а (толщина пластины 0,4 мм, рабочая сторона, ориентированная в плоскости (100), отполирована химико-механическими методами), система параллельных полос в количестве 682 шт. расположена на рабочей поверхности и ориентирована вдоль оси [110] и представляет собой канавки глубиной 150 мкм на поверхности арсенида галлия.

Исследование распространения ПАВ в такой структуре выявило полосу непрозрачности с центральной частотой 142,69±0,04 МГц, что при использовании справочного значения скорости ПАВ 2,86 км/с [11] дает значение периода 10,022± ±0,004 мкм (при изготовлении был задан период 10 мкм).

Точность определения периода зависит от точности измерения частоты, которая в реальном диапазоне частот составляет при измерении в ручном режиме 20 кГц, т.е. относительная точность не хуже 10⁻⁴, и в принципе при автоматизации измерений может быть улучшена. Такой точности линейных измерений в микронном и субмикронном диапазоне вполне достаточно. Более серьезным ограничением точности измерения периода является точность задания скорости ПАВ, которая составляет около 2% (если пользоваться справочными данными). Рассмотрим более подробно, чем определяется скорость звука в твердых телах и, конкретно, скорость ПАВ в пьезокристаллах и в структурах ВШП на пьезокристалле.

Скорость ПАВ зависит от таких факторов, как исходный материал, его однородность, стехиометрический состав, которые определяются условиями роста. Поэтому разброс по скорости выше у многокомпонентных соединений. Достаточно подробно этот вопрос исследован применительно к ниобату лития при производстве телевизионных фильтров [12], для которого разброс составил от 3974 до 3984 м/с, т.е. 2,5 · 10⁻³ (менее 1%). Кроме того, на скорость ПАВ влияет разориентация подложки и неточность размещения структуры относительно базового среза подложки (изменение скорости при разориентации 1—2° составляет около 10⁻³ для обычных материалов [13]), а также качество полировки поверхности, которое приводит к уменьшению скорости ПАВ при наличии нарушенного слоя (тем больше, чем выше частота). В результате проведенных экспериментов отмечалось линейное уменьшение скорости ПАВ в ST, X SiO₂ с 3,154 км/с при 0,5 ГГц до 3,147 км/с при увеличении частоты до 2,5 ГГц. При этом в СВЧ диапазоне скорость начинает в тех же пределах определяться и характером используемых для обработки поверхности технологических процессов.

Таким образом, с этими факторами даже без наличия на подложке каких-либо структур связан разброс по скорости на уровне 1%. Фактором, изменяющим скорость ПАВ, является и наличие различных структур на поверхности. Зависимость скорости ПАВ от периодического рельефа на поверхности хорошо изучена при изготовлении и выпуске приборов на ПАВ с отражательными решетками [10].

В некоторых экспериментах при глубине канавок в 2—3 мкм для ПАВ с длиной волны 20 мкм отмечалось уменьшение скорости за счет рельефа до 5% от исходного. Однако параметры рельефа могут быть измерены независимо и влияние рельефа можно учесть, произведя измерение его параметров и расчет скорости ПАВ, исходя из этого параметра.

Нанесение ВШП на структуру приводит к тому, что скорость ПАВ под этой структурой зависит от толщины и материала электродов и коэффициента металлизации (отношения ширины электрода к периоду структуры). Влияет на скорость ПАВ и наличие самого металла, что приводит к закорачиванию пьезоэлектрических полей ($\Delta v/v \sim k^2/2$, где k^2 — квадрат константы электромеханической связи). Максимального разброса по скорости ПАВ при плохом качестве изготовления структур следует ожидать для сильных пьезоэлектриков типа ниобата лития, для которых разброс скорости может достигать 2—2,5%. Но, как правило, разброс скорости при правильной организации технологического процесса не превышает 0,5—1%.

Следующим фактором, ограничивающим точ-
ность определения периода структуры, является непериодичность структуры. Поэтому требуется контроль периодичности, что представляет собой самостоятельную задачу, хотя при использовании оптических методов изготовления шаблонов с использованием промежуточных фотооригиналов (ПФО) степень периодичности может быть достаточно высокой, не хуже 1%.

Периодичность структуры контролировалась по однородности ее окраски при просмотре в микроскопе с малым увеличением. Использование специальных тестовых структур с периодом, сбитым на 1 мкм (при периоде в ПФО 25 мкм), и с шириной элемента, также измененной на 1 мкм (при периоде 24 мкм в размере 12 мкм, в масштабе ПФО), показало, что изменения периода на уровне 5% надежно фиксируются либо в ступенчатом изменении окраски с розового на желтый или с желтого на зеленый, либо в виде контрастной полосы именно при малом увеличении микроскопа.

Точность выдерживания периода должна проявляться и на АЧХ. Известно [14], что при работе с отражающей решеткой, состоящей из двух фрагментов, сдвинутых друг относительно друга, провал в АЧХ при наблюдении на просвет становится несимметричным и даже возможно появление резонансного пика внутри провала. Таким образом, по форме АЧХ можно судить о периодичности, хотя это требует более строгого расчета с учетом реальных материала и геометрии структуры.

Следующей причиной, приводящей к неточности определения периода, являются искажения АЧХ, связанные с условиями распространения ПАВ различных типов в периодической системе полос, в частности, с существованием верхней частоты отсечки при использовании сдвиговых поверхностных волн [10], а также искажения АЧХ из-за переотражения ПАВ элементами периодических структур [13], что может давать погрешность порядка полосы пропускания системы. Если такая точность определения периода устраивает пользователя меры, то может быть использована любая структура прибора на ПАВ как в виде четырехполюсника, так и двухполюсника (одновходовый резонатор).

Изложенные принципы воплощены в комплекте отраслевых стандартных образцов периодической структуры, в котором была реализована структура с периодом 1 мкм на пьезоэлектрической подложке (пьезокварц, арсенид галлия). Точность задания периода не хуже 4% при доверительной вероятности 95%. Разработана программа аттестации и технология изготовления таких структур.

литература

1. H a r r i s K. Advances in E-beam metrology.— Solid State Technology, 1989, N 1, p. 100—101.

2. P I o n t k e R. Application of electron-optical instruments for measuring small pattern features in microlithography.— SPIE, Integrated Circut Metrology II, 1984, vol. 480, p. 120—124.

3. Jensen S., Smyt D. Sub-micrometer length metrology: problems, techniques and solitions.— SEM, 1980, Chicago, p. 393—404.

4. Невзорова П.Н., Петров В.И., Щитов Н.И. Проблемы линейных измерений с помощью РЭМ.— Поверхность, 1982, № 11, с. 124.

5. Лозинская Т.М., Митрофанов А.В., Громова Т.И. Тест-объекты для РЭМ.— VI Всесоюзный симпозиум по растровой электронной микроскопии и аналитическим методам исследования твердых тел (РЭМ-89), 1989, с. 53.

6. Измерение малых длин при помощи растрового электронного микроскопа/О.В.Богданкевич, Ж.Желкобаев, В.В.Календин и др.— Измерительная техника, 1985, № 11, с. 31—33.

7. Морозов А.И., Проклов В.В., Станковский Б.А. Пьезоэлектрические преобразователи для радиоэлектронных устройств.— М.: Радио и связь, 1981.— 184 с.

8. Олинер А. Поверхностные акустические волны.— М.: Мир, 1981.— 394 с.

9. Recent Development in SAW Device Applications/ K.F.Lau, K.H.Yen, R.S.Kagiwada, R.B.Stokes.— IEEE MTT. Sump. Digest., 1984, N 3.3, p. 80—82.

10. Гуляев Ю.В., Плесский В.П. Распространение ПАВ в периодических структурах.— УФН, 1989, т. 157, № 1, с. 85—127.

11. Акустические кристаллы. Справочник/А.А.Блистанов, В.С.Бондаренко, В.В.Чкалова и др.— Под ред. М.П.Шаскольской.— М.: Наука, 1982.— 636 с.

12. Бельский Ю.В., Кандыба П.Е., Сорокин В.Г. Контрольскорости ПАВ в пластинах ниобата лития при серийном производстве фильтров для телевизионных приемников.— Материалы конференции «Акустоэлектронные устройства обработки информации», 1988, г. Черкассы.— М.: ВИНИТИ, 1988, с. 297—298. 13. Орлов В.С., Бондаренко В.С. Фильтры на

13. Орлов В.С., Бондаренко В.С. Фильтры на поверхностных акустических волнах. — М.: Радио и связь, 1984. — 272 с.

14. Белл Л.Т., Ли Р.С.М. Резонаторы на поверхностных акустических волнах.— ТИИЭР, 1976, т. 64, № 5, с. 171—183.

Статья поступила 15 августа 1989 г.

СКОПЛЕНИЯ МЕЖДОУЗЕЛЬНЫХ АТОМОВ В КРЕМНИИ И ГЕРМАНИИ

А.Л.Асеев, Л.И.Федина, Д.Хёэль, Х.Барч

Институт физики полупроводников СО АН СССР Новосибирск: Наука, 1990, IV кв.— 15 л. Рассмотрены процессы взаимодействия точечных дефектов с атомами примесей, дислокациями, поверхностью кристалла, которые приводят к образованию скоплений междоузельных атомов различного типа. На основе данных, полученных с помощью in situ облучения в высоковольтном электронном микроскопе, приведены оценки основных характеристик этих взаимодействий.

Книга предназначена для специалистов по физике дефектов структуры, полупроводниковому материаловедению и технологии полупроводников. УСИЛИТЕЛЬНО-АКУСТИЧЕСКОЕ УСТРОЙСТВО

«ЭЛЕКТРОНИКА УАУ-02»

усиливает и преобразует электрические сигналы от электронно-музыкальных инструментов в акустические сигналы. Динамический компрессор на входе усилителя, поддерживающий номинальный уровень сигнала, обеспечивает повышенную надежность устройства.

ТОВАРЫ И УСЛУГИ НАСЕЛЕНИЮ

Номинальная выходная мощность усилителя низкой частоты, Вт
Диапазон воспроизводимых частот УНЧ Ги
Коэффициент нелинейных искажений, % 0,2 0,2 0,2 мВ, 250 мВ)
Уровень фона паузы, дБ
Потребляемая мощность, вт
Масса, кг

Цена 250 руб.

Институтом электроники Академии наук БССР

ПРЕДЛАГАЮТСЯ НОВЫЕ МЕТОДЫ АЛЮМООКСИД-НОЙ ТЕХНОЛОГИИ, позволяющие формировать некоторые конструкционные компоненты микросхем и приборов, в частности платы с отверстиями и встроенными проводниками и кольцевые разрезные изоляторы.

Платы с встроенными в оксид алюминия проводниками могут быть изготовлены с контактными площадками на любой или обеих сторонах диэлектрической пластины. Толщина платы и размеры проводников не играют существенной роли. Сохраняется планарность поверхности до нескольких единиц микрометра. Коммутационные проводники на плате располагаются перпендикулярно к ее поверхности. Имеется возможность регулировать геометрические размеры проводников.

Обеспечивается высокая точность при изготовлении кольцевых изоляторов диаметром более 5 мм, с толщиной стенки 100—650 мкм.

Разработки защищены авторскими свидетельствами и заявками на изобретение.

Адрес для справок и запросов: 220841, Минск-90, ГСП, Логойский тракт, 22, Институт электроники Академии наук БССР.

Акустическая система

«ЭЛЕКТРОНИКА 35АС-130»

Впервые в отечественной радиоаппаратуре в системе «Электроника 35АС-130» применена низкочастотная головка жесткой сотовой конструкции, обеспечивающая высокое качество звучания в области низких частот.

Размеры системы уменьшены благодаря использованию пассивного прерывателя.

Отделка корпуса ценными породами дерева позволяет акустической системе «Электроника 35AC-130» удачно вписываться в интерьер жилого помещения.

Предельная долговременная монность Вт. 75
Продоку ная интерез нестная мощность, БТ 75
предельная шумовая мощность, В 50
Эффективный рабочий диапазон
частот, Гц 50-25000
Номинальное электрическое
сопротивление, Ом 8
Уровень характеристической
чувствительности в диапазоне
частот 100-8000 Гц не менее 84 дБ
Габаритные размеры, мм 250×420×250
Масса, кг
Цена одной колонки 90 руб.

Многогранные образы звучания, образы звучания, создаваемые с помощью стереофонической стереофонной приставки

«Электроника004»

способны удовлетворить вкусы самых тонких ценителей классической и эстрадной музыки.

Запись моно- и стереофонических программ, воспроизведение их через стереонаушники или дополнительный стереоусилитель и внешние громкоговорители, воспроизведение записанного сигнала при прямом и обратном движении ленты, прослушивание записанного сигнала непосредственно во время записи — основные возможности устройства «Электроника 004».

Электронно-логическое управление лентопротяж-
ным механизмом обеспечивает переключение ре-
жимов в любой последовательности.
Число дорожек записи
Пиапазон воспроизволинии
acioi, 14
31,5—16000
Коэффициент детонации при скорости
движения ленты 19,05 см/с, % не более +0.1
Относительный уровень шумов, дБ
(оэффициент нелинейных искажений %)
Тотребляеная ношность Вт 430
ачарятные размеры, мм 490×400×220
масса, кг
1ена 1370 руб

ПРИБОРЫ, СОЗДАННЫЕ НА ОСНОВЕ ПИРОЭЛЕКТРИЧЕСКИХ ПРИЕМНИКОВ ИК ИЗЛУЧЕНИЯ Предназначены для детектирования энер-

ик излучени: ПМ-3, ПМ-4

От обеспечения работы систем ориентации космических аппаратов до управления устройствами бытового назначения таков диапазон применения этих приборов.

они способны

- известить о неисправностях линий электропередач или тепловых потерях в оборудовании и помещениях,
- оценить состав выхлопных газов автомобилей,
- подать сигнал тревоги при возгорании,
- представить информацию для медицинских диагностических систем,
- обеспечить охрану помещения.

Предназначены для детектирования энергии модулированного ИК излучения в диапазоне 7—14 мкм. Входное окно приемников выполнено из германия с просветляющим покрытием, обеспечивающим максимум чувствительности в указанном диапазоне длин волн.

Применение в приемниках чувствительных элементов на основе кристалла танталата лития (LiTaO₃) обеспечивает высокую временную и температурную стабильность параметров.

Приемник ПМ-3 используется при частотах модуляции излучения выше 20 Гц и повышенном уровне аппаратурной вибрации. Приемник ПМ-4 обладает повышенной чувствительностью.

Пороговый поток при част для ПМ-3	оте модуляции 20 Гц не более 3·10 ⁻⁹ Вт/Гц ^{1/2}
для ПМ-4	не более 1,5 10 ⁻⁹ Вт/Гц ¹ / ²
Вольтовая чувствительност	ь при частоте
модуляции 20 Гц	не менее 100 В/Вт
Диаметр приемной площа	дки 1,5 мм
Угол поля зрения	не менее 90
Рабочая температура	+ 60 °C
Вибропрочность	
в диапазоне частот 1—	2000 Гц 10а
одиночные удары	1000 a
Габариты	Ø8.3×11 MM
Длина выводов	не менее 13.5 мм
Macca	З г

БЫСТРОДЕЙСТВУЮЩИЕ МАЛОМОЩНЫЕ ЦИФРОВЫЕ МИКРОСХЕМЫ СЕРИИ КР1533

А.В.Прибыльский, А.М.Сухопаров, В.С.Якубовский, С.А.Ельцова

Микросхемы серии КР1533 представляют собой быстродействующие маломощные цифровые интегральные микросхемы транзисторно-транзисторной логики с диодами Шотки (МТТЛШ). Они предназначены для применения в радиоэлектронной аппаратуре с жесткими требованиями по потребляемой мощности, массе и габаритам.

ИС серии КР1533 отличаются от технологии обычной маломощной ИС с диодами Шотки (К555) применением ионной имплантации примесей вместо диффузии. Это дает возможность осуществлять точный контроль над глубиной легирования и разрешающей способностью. Отсюда более тонкий эпитаксиальный слой и геометрия более малых размеров, снижающие паразитные емкости. Применение окисной изоляции между транзисторами вместо изоляции *p*—*n*-переходом также улучшает рабочие характеристики, уменьшая величину емкости коллектор—подложка.

ИС серии МТТЛШ — универсальный набор устройств цифровой обработки информации, обладающий достаточной функциональной полнотой. Функциональные группы серии обеспечивают выполнение логических и арифметических операций, хранение и передачу информации, преобразование кодов информации, адресацию по каналам и устройствам, что позволяет реализовать почти любой автомат цифровой обработки информации или управления.

Микросхемы серии КР1533 полностью совместимы по уровням с микросхемами серий К155, К555, К583, К584, К589 и превосходят их по быстродействию при меньшей потребляемой мощности.

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛН2

Микросхема КР1533ЛН2 содержит шесть инверторов с открытыми коллекторными выходами.

Инверторы независимые, каждый реализует функцию «НЕ»: У=А.

Для улучшения точности работы микросхемы требуется подключение внешних ограничительных резисторов к открытым коллекторным выходам микросхемы.

Наличие открытого коллекторного выхода дает возможность реализо-вать на этих микросхемах функцию проводного (монтажного) ИЛИ (монтажного И). Это достигается объединением открытых коллекторных выходов с подключением внешнего резистора. Величина резистора определяется с учетом коэффициента разветвления по выходам, объединенным по ИЛИ, и с учетом числа приборов, объединенных по ИЛИ. Она выбирается в диапазоне между максимальной величиной (установленной при условии обеспечения требуемого напряжения высокого уровня на всех объединенных по ИЛИ выходах в состоянии высокого уровня) и минимальной величиной (установленной так, чтобы нагрузочная способность выходов, объединенных по ИЛИ, не превышалась в случае, когда только один выход находится в состоянии низкого уровня). При выборе величины резистора также следует учитывать, что падение напряжения на нем при суммарном токе подключенных цепей не должно превышать 2 В.

Более низкие величины сопротивления из выбранного таким образом диапазона позволяют достичь повышенного быстродействия, тогда как более высокие дают возможность снизить рассеиваемую мощность.

Микросхемы с открытым коллекторным выходом часто используются для создания более высокого уровня значений выходных напряжений, что применяется в случаях работы на микросхемы с обычным выходом, которые, в отличие от ИС с открытым коллектором, не работают в диапазоне входных напряжений между пороговыми значениями.

Основные электрические параметры
Выходное напряжение низкого уровня, В,
не более
при выходном токе 4 мА
8 мА 0,5
Входной ток, мкА, не более
низкого уровня
высокого уровня 20
Гок потребления мА, не более при низком удовне
выходного напряжения
при высоком уровне
выходного напряжения 1,1
Время задержки распро-
странения, нс, не более
при включении
при выключении
выходного напряжения

Конструктивно микросхема КР1533ЛН2 выполнена в 14-выводном пластмассовом корпусе.

Назначение выводов приведено в таблице. Условное графическое обозначение — на рисунке.

Номер вывода	Обозна- чение	Назначе- ние
1, 3, 5, 9, 11, 13	A1-A6	Входы
2, 4, 6, 8, 10, 12	<u> 71</u> - <u>76</u>	Выходы
7	o U	Общий вывод
14	Ucc	Вывод пита- ния

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ -

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛА7

Микросхема КР1533ЛА7 — два логических элемента 4И-НЕ с открытыми коллекторными выходами.

Конструктивно микросхема выполнена в 14-выводном пластмассовом корпусе типа 201.14-1.

Условное графическое обозначение микросхемы приведено на рисунке. Назначение выводов — в таблице. Уровни напряжения для режимов функционирования приведены в таблице истинности.

Основные электрические параметры

Выходное напряжение низкого уровня. В. не более
при выходном токе 4 мА 0,4
8 MA 0,5
Входной ток, мкА, не более
низкого уровня
высокого уровня 20
Ток потребления, мкА, не более
при высоком уровне вы-
ходного напряжения 0,4
при низком уровне вы-
ходного напряжения 1,5
Время задержки распро-
странения ис, не более
при включении
при выключении

Номер вывода	Обозначе- ние	Назначе- ние
1, 2, 4, 5	1D11D4	Информаци- онные входы
9, 10, 12, 13	2D12D4	Информаци- онные входы
6, 8	$\overline{Q1}, \overline{Q2}$	Выходы
3, 11	-	Свободные выводы
7	OU	Общий вывод
14	Ucc	Вывод пита- ния

Таблица истинности				
Входы		Выход		
DI	D2	D3	D4	Q
L	X	X	x	H
x	L	X	X	H
X	x	L	x	H
X	X	X	L	H
Н	H	H	Н	L

Н — высокий логический уровень; L — низкий логический уровень; X — безразличное состояние (Н или L).

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ТР2

Микросхема КР1533ТР2 — четыре *R-S-*триггера.

Для расширения функциональных возможностей два триггера из четырех имеют по два входа S, логически объединенных по И.

Конструктивно ИС КР1533ТР2 выполнена в 16-выводном пластмассовом корпусе.

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке, уровни напряжения для режимов функционирования — в таблице истинности.

Номер вывода	Обозначение	Назначение
1, 5, 10, 14	R1, R2, R3, R4	Входы уста- новки в состояние «лог.0»
2, 3, 6, 11, 12, 15	$\frac{151}{351}, \frac{152}{352}, \frac{25}{45}$	Входы уста- новки в сос- тояние «лог. 1»
4, 7, 9, 13	Q1, Q2, Q3, Q4	Выходы
8	o <i>U</i>	Общий вывод
16	Ucc	Вывод питания

Основные электрические параметры

Выходное напряжение высокого
уровня, при выходном токе
0,4 мА, В, не менее 2.5
Выходное напряжение низко-
го уровня при выходном токе
4 мА, В, не более 0.4
Входной ток, мкА, не более
низкого уровня
высокого уровня 20
Ток потребления, мА, не более 5.5
Время задержки распростране-
ния при включении, нс, не более
по входам 5 22
\overline{R}
Время задержки распростране-
ния при выключении, нс, не более
по входам 5 22

Таблица истинности

	Входы		Выход
<u>S1</u>	52	R	Q
Н	н	Н	Q_0
x	L	Н	Н
L	X	Н	Н
н	Н	L	L
L	L	L 3	апрещено

H — высокий логический уровень; L — низкий логический уровень; X — безразличное состояние (H или L); Q_0 — предыдущее состояние выходной информации.

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ.

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533TM2

[•] Микросхема КР1533ТМ2 — два *D*-триггера с однофазным приемом информации и с независимой установкой в состояние «лог. 0» и «лог. 1». Триггеры имеют прямые и инверсные выходы. Конструктивно ИС КР1533ТМ2 вы-

полнена в 14-выводном пластмассовом корпусе типа 201.14-1.

Условное графическое обозначение КР1533ТМ2 приведено на рисунке. Назначение выводов — в таблице.

Триггеры типа TM2 являются динамическими, выполнены на основе двуступенчатых триггеров с записью информации в первую ступень по фронту импульса синхронизации и с перезаписью информации из первой ступени во вторую по срезу импульса синхронизации. Каждый триггер имеет раздельные входы синхронизации и установки.

При состоянии высокого уровня на входе синхронизации триггер хранит предшествующее состояние. Установка в исходное состояние низкого или высокого уровня принудительная и не зависит от предшествующего состояния триггера и сигналов на входах информации и синхронизации.

Уровни напряжения для режимов функционирования приведены в таблице истинности.

Для тригтеров этого типа существенны минимальное значение длительности импульса записи информации и временные соотношения по времени установления и удержания на входах управления относительно входа информации.

Время установления характеризует интервал времени, необходимый для установки сигнала информации с опережением сигнала синхронизации (разрешения) при записи информации.

Номер вывода	Обозначение	Назначение	
1, 13	$\overline{R1}, \overline{R2}$	Входы установки в состояние «лог. 0»	
2, 12	D1, D2	Информационные входы	
. 3, 11	C1, C2	Входы синхрониза- ции	
4, 10	<u>51, 52</u>	Входы установки в состояние «лог. 1»	
5, 6, 9, 8	Q1, Q1, Q2, Q2	Выходы	
7	οU	Общий вывод	
14	Ucc	Вывод питания	

	Таблица истинности					
	Bxc	оды		Вых	оды	
s	R	с	D Q Q			
L	Н	x	X	Н	L	
H	L	x	x	L	н	
L	L	x	X	Запрещено		
H	н	t	Н	Н	L	
Н	н	t	I.	L	H	
Н	н	L	x	Qn	\overline{Q}_0	

Н — высокий логический уровень; L — низкий логический уровень; X — безразличное состояние (H или L); A — переход от низкого уровня к высокому; Q₀ — предыдущее состояние выходной информации.

Основные электрические параметры

Выходное напряжение высокого
уровня при выходном токе
0,4 мА, В, не менее
Выходное напряжение низкого
уровня при выходном токе
8 мА, В, не более 0,5
Входной ток низкого уровня,
мкА, не более
по входам \overline{R} , S
$D, C, \ldots, \ldots, -200$
Входной ток высокого уров-
ня, мкА, не более
Ток потребления, мА, не более 4
Время задержки распростране-
ния при включении, нс. не более
по входам R. S
C
Время задержки распростране-
ния при выключении, нс, не более
по входам R. S 13
C
영화 이 지난 영화에 가지 않는 것이 있는 것이 같이 많이

Время установления, нс, не менее 100 Время удержания, нс, не менее 0

Время удержания характеризует интервал времени, необходимый для завершения записи при удержании сигнала информации после воздействия сигнала синхронизации (разрешения).

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛР13

Микросхема КР1533ЛР13 — логический элемент 2-3-3-2И-4ИЛИ-НЕ. Конструктивно микросхема выполнена в 14-выводном пластмассовом корпусе 201.14-1.

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке.

Номер вывода	Обозначе- ние	Назначе- ние	
1, 2, 3, 4, 5 9, 10, 11, 12, 13	A1, B1, A2, B2, C2 A3, B3, C3, A4, B4	Входы	
6	Q	Выход	
7	0 <i>U</i>	Общий вывод	
14	Ucc	Вывод пита- ния	

Основные электрические параметры

Выходное напряжение низкого
уровня при выходном токе
4 мА, В, не более 0,4
Выходное напряжение высоко-
го уровня при выходном
токе 0,4 мА, В, не менее 2,5
Входной ток, мкА, не более
низкого уровня
высокого уровня 20
Ток потребления, мА, не более
при низком уровне выход-
ного напряжения 1,6
при высоком уровне выход-
ного напряжения 1,25
Время задержки распростране-
ния при включении (выклю-
чении), нс. не более

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ТВ15

Микросхема КР1533ТВ15 — два J-K-триггера с входами установки в состояния «лог. 0» — является универсальным триггером с парафазным приемом информации и с независимой установкой в состояние «лог. 0» и «лог. 1».

I—*K*-триггеры — двухступенчатые, запоминание информации в них происходит при помощи вспомогательного триггера.

Конструктивно ИС КР1533ТВ15 выполнена в 16-выводном пластмассовом корпусе.

Условное графическое обозначение КР1533ТВ15 приведено на рисунке. Назначение выводов — в таблице.

Уровни напряжения для режимов функционирования приведены в таблице истинности.

Запись информации в тригтер происходит по фронту, а изменение состояния на выходах — по срезу импульса синхронизации.

В асинхронном режиме триггер работает по входам \overline{R} и \overline{S} аналогично RSтриггеру (состояние входов *J*, *K*, *C* произвольны).

Основные электрические параметры

Выходное напряжение высокого
уровня при выходном токе
0,4 мА, В, не менее
Выходное напряжение низкого
уровня, В, не более
при выходном токе 4 мА
8 мА 0,5
Входной ток низкого (высокого)
уровня, мкА, не более
по входам S и R
$J. C. K. \dots -200 $ (20)
Ток потребления, мА, не более 4
Время задержки распростране-
ния при включении, (выклю-
чении), нс, не более
по входам S и R
<i>C</i>

Номер вывода	Обозначение	Назначение Входы установки в состояние «лог. 0»	
1, 15	$\overline{R}1, \overline{R}2$		
2, 3, 13, 14	J1, K 1, K 2, J2	Информационные входы	
4, 12	C1, C2	Входы синхрониза- ции	
5, 11	51, 52	Входы установки в состояние «лог. 1»	
6, 7, 9, 10	Q1, Q1, Q2, Q2	Выходы	
8	ou	Общий вывод	
16	Uce	Вывод питания	

	Та	аблица	ист	инно	сти	
	Bxo	оды			Вых	оды
\overline{S}	R	С	J	ĸ	Q	\overline{Q}
L	Н	x	x	x	11	L
Н	L	x	x	x	L	Н
L	L	x	x	x	Запре	ещено
н	н	t	L	L	L	Н
н	Н	t	н	L	Счетный режим	
н	н	t	L	Н	Qo	\overline{Q}_0
н	н	+	н	н	н	L
н	Н	L	x	x	Qo	\overline{Q}_{\circ}

H — высокий логический уровень; L — низкий логический уровень; X — безразличное состояние (H или L); \dagger — переход от низкого уровня к высокому; Q_0 — предыдущее состояние выходной информации.

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛР11

Микросхема КР1533ЛР11 — логические элементы 3-3И-2ИЛИ-НЕ и 2-2И-2ИЛИ-НЕ.

Конструктивно микросхема выполнена в 14-выводном пластмассовом корпусе 201.14-1.

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке.

Основные электрические параметры

Выходное напряжение низкого
ИООВНЯ ПОИ ВЫХОДНОМ ТОКЕ
4 мА, В, не более
Выходное напряжение высоко-
го уровня при выходном
гоке 0,4 мА, В, не менее
Входной ток, мкА, не более
низкого уровня
высокого уровня
Гок потребления, мА, не более
при низком уровне выход-
ного напряжения 2,2
при высоком уровне выход-
ного напряжения 1,25
Время задержки распростране-
ия при включении, (выклю-
ении), нс. не более 20

Номер вывода	Обозначе- ние	Назначение	
1, 12, 13	A1, B1, C1		
11, 10, 9	A2, B2, C2	Входы	
2, 3	A3, B3		
4, 5	A4, B4		
8, 6	<u>Q1</u> , Q2	Выходы	
7	o <i>U</i>	Общий вывод	
14	Ucc	Вывод пита- ния	

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ ____

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛП3

Микросхема КР1533ЛП3 — мажоритарный элемент.

Конструктивно микросхема выполнена в 16-выводном пластмассовом корпусе 238.16-1.

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке, уровни напряжения для режимов функционирования — в таблице истинности.

Номер вывода	Обозначение	Назначение Информацион- ные входы	
1, 2, 3, 5, 6, 7	$\begin{array}{c} A1, \ B1, \ C1, \ A2, \ B2, \\ C2 \\ A3, \ B3, \ C3 \end{array}$		
4, 9, 10	Q1, Q2, Q3	Выходы	
8	ou	Общий вывод	
14	_	Свободный	
15	CO	Вход управле- ния	
16	Ucc	Вывод питания	

Таблица истинности

	Входы		Выхо,		
со	A	В	С	Q	
L	L	L	L	L	
L	Н	н	Н	Н	
L	L	L	Н	L.	
L	Н	Н	L	H	
L	L	н	L	L	
L	Н	L	Н	Н	
L	Н	L	L	L	
L	L	н	Н	Н	
Н	X	X	Н	Н	
Ĥ	X	X	L	L	

Н — высокий логический уровень; L — низкий логический уровень; X безразличное состояние (Н или L).

Основные электрические параметры

Выходное напря:	жение высоко-
го уровня при вы	ходном токе
0,4 мА, В, не мен	iee
Выходное напря:	жение низкого
уровня при выхо	дном токе
4 мА, В, не более	0.4
Входной ток выс	ОКОГО УДОВНЯ.
мкА, не более	31
по выводу СО	
A. 1	B
С.	60
Входной ток низ	KOLO ADOBHA
мА. не более	noro ypoblik,
по выводу СО А, И	$\begin{vmatrix} \cdots \cdots \cdots \cdots \end{vmatrix} \begin{vmatrix} -0,2\\ -0,4 \end{vmatrix}$
Ток потребления. при низком уро	•••••••••••••••••••••••••••••••••••••
напряжения при высоком у	овне выходного 7
напряжения	
время задержки	распространения
при включении (п	выключении)
нс, не более	
от выводов А,	В, С
к выводу Q	
от вывода СО	
к выводу Q	

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛП5

Микросхема КР1533ЛП5 — четыре двухвходовых логических элемента «Исключающее ИЛИ».

Конструктивно микросхема выполнена в 14-выводном пластмассовом корпусе 201.14-1.

Основные электрические параметры

Выходное напряжение низкого уровня, В, не более
при выходном токе 4 мА 0.4
8 MA 0.5
Выходное напряжение высокого
уровня при выходном токе
0,4, В, не менее
Входной ток, мкА, не более
низкого уровня
высокого уровня
Ток потребления, мА, не более 5.9
Время задержки распростра-
нения при включении (выклю-
чении), нс. не более

Номер вывода	Обозначение	Назначение
1, 2, 4, 5	A1, B1, A2, B2	Информацион-
9, 10, 12, 13	A3, B3, A4, B4	ные входы
3, 6, 8, 11	Q1, Q2, Q3, Q4	Выходы
7	o <i>U</i>	Общий вывод
14	Ucc	Вывод питания

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке, уровни напряжения для режимов функционирования — в таблице истинности.

Таблица истинности			
Bx	оды	Выход	
A	В	Q	
L	L	L	
L	Н	Н	
Н	L	Н	
Н	Н	L	

Н — высокий логический уровень; L — низкий логический уровень.

УДК 621.3.049.77

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ КР1533TM8, TM9

Микросхема КР1533ТМ8 включает четыре *D*-триггера. Микросхема КР1533ТМ9 — шесть *D*-триггеров.

Назначение выводов КР1533ТМ8

Номер вывода	Обозначение	Назначение Вход установки в состояние «лог. О	
1	R		
2, 7, 10, 15	Q1, Q2, Q3, Q4	Выходы	
3, 6, 11, 14	$\overline{Q1}, \overline{Q2}, \overline{Q3}, \overline{Q4}$	Выходы	
4, 5, 12, 13	D1, D2, D3, D4	Информационные входы Вход синхрониза- ции Общий вывод	
9	С		
8	0 U		
16	Ucc	Вывод питания	

Назначение выводов КР1533ТМ9

Номер вывода	Обозначе- ние	Назначение	
1	R	Вход установки в состояние «лог. 0»	
2, 5, 7, 10, 12, 15	Q1Q6	Выходы	
3, 4, 6, 11, 13, 14	D1D6	Информационные входы	
9	С	Вход синхрониза- ции	
8	o U	Общий вывод	
16	Ucc	Вывод питания	

	Таблица истинности КР1533ТМ8, ТМ9 Входы Выходы			
R	С	D	Q	Q
L	X	x	L	H
Н	+	H	Н	L
Н	1	L	L	H
Н	L	x	Qo	Q.

L — низкий логический уровень; H — высокий логический уровень; X — безразличное состояние (H или L): 4 — переход от низкого уровня к высокому; Q_{0}, Q_{0} — предыдущее состояние выходной информации.

Микросхемы типа ТМ8, ТМ9, аналогично ТМ2, выполнены на двухступенчатых синхронных динамических Dтриггерах. ИС КР1533ТМ8 имеет прямые и инверсные выходы (Q и \bar{Q}), КР1533ТМ9 — только прямые выходы (Q), без инверсии.

Конструктивно ИС КР1533ТМ8, ТМ9 выполнены в 16-выводном пластмассовом корпусе 238.16-1.

Назначение выводов приведено в таблицах.

Условные графические обозначения — на рисунке.

Триггеры имеют общие шины по вхо дам синхронизации и установки в состояние «лог. 0».

Запись информации осуществляется по фронту сигнала синхронизации на входе С. В состоянии низкого уровня на входе синхронизации триггер сохраняет предшествующее состояние.

Уровни напряжения для режимов функционирования приведены в таблице истинности.

Основные электрические параметры

Выходное напряжение высокого
уровня при выходном токе
0,4 мА, В, не менее
Выходное напряжение низкого
уровня при выходном токе
8 мА, В, не более 0,5
Входной ток, мкА, не более
низкого уровня
высокого уровня 20
Ток потребления, мА, не более
TM8
ТМ9 19
Время задержки распростране-
ния при включении, нс, не более
по входу R 23
<i>C</i>
Время задержки распростране-
ния при выключении, нс, не более
по входу R (для ТМ8) 18
<i>C</i>
Время, нс, не менее
установления
удержания0

УДК 621.3.049.77

ИНТЕГРАЛЬНАЯ МИКРОСХЕМА КР1533ЛР4

Микросхема КР1533ЛР4 — логический элемент 2-4И-2ИЛИ-НЕ.

Конструктивно микросхема выполнена в 14-выводном пластмассовом корпусе 201.14-1.

Назначение выводов приведено в таблице, условное графическое обозначение — на рисунке.

Номер вывода	Обозначе- ние	Назначение	
14	A1, B1, C1, D1		
1013	A2, B2, C2, D2	Входы	
8	\overline{Q}	Выход	
7	0 <i>U</i>	Общий вывод	
14	Ucc	Вывод питания	

Основные электрические параметры

Выходное напряжение
высокого уровня при вы-
ходном токе 0,4 мА. В. не менее 2,5
Выходное напряжение низ-
кого уровня. При выходном
токе 4 мА. В не более
Входной ток. мкА. не более
низкого удовня
высокого удовня
Ток потребления. мА. не более
при низком уровне выхол-
ного напояжения
TON BUCKON VOOBHE BUXOT-
ного напояжения 075
Roews Janenwick nachnocrnaue-
иня ис не более
пих, нс, нс облес при включении 20
при включении
при выключении

УДК 621.3.049.77.037.33

ЛИНЕЙНЫЕ ФОТОЧУВСТВИТЕЛЬНЫЕ МИКРОСХЕМЫ С ЗАРЯДОВОЙ СВЯЗЬЮ К1200ЦЛ7 И К1200ЦЛ71

Е.В.Костюков, А.Г.Огородников, Л.С.Турилина

Быстродействующие инструментальные линейные фоточувствительные микросхемы с зарядовой связью (ЛФМЗС) К1200ЦЛ7 и К1200ЦЛ71 созданы на конструктивно-технологической основе микросхемы К1200ЦЛ5 [1, 2], являются ее аналогами по числу элементов и имеют апертурное отношение 40:1.

. Микросхемы К1200ЩЛ7 и К1200ЩЛ71 выполнены в 24-выводном металлокерамическом основании. Микросхема К1200ЩЛ7 загерметизирована оптическим окном из лейкосапфира, имеющим высокое пропускание в коротковолновой части спектра. Микросхема К1200ЩЛ71 не загерметизирована и предназначена для использования в специальных оптических системах (например, волоконно- или электронно-оптических).

В фоточувствительном элементе вытянутой прямоугольной формы по сравнению с квадратным элементом при равных площадях отношение периметра элемента к его площади значительно больше. Если учесть, что в традиционной конструкции фоточувствительного элемента прямоугольной формы с изоляцией, полученной методом локального окисления

Рис. 1. Конструкция фоточувствительного накопителя линейных ФМЗС К1200ЦЛ7 и К1200ЦЛ7 : a — топология фотоячейки: 6 — поперечное сечение фотоячейки: g — продольное сечение фотоячейки

или стоп-канальной диффузии, влияние периметра элемента на темновой ток значительно больше, чем влияние площади, ограниченной этим периметром, то можно ожидать, что суммарный темновой ток фоточувствительных элементов К1200ЦЛ7(71) увеличится более чем в 40 раз по сравнению с К1200ЦЛ5. В связи с этим фоточувствительный накопитель в разработанных микросхемах имеет изоляцию элементов в виде МДП-структуры с поликремниевым затвором, что позволило значительно снизить величину темнового тока и его неоднородность [3]. Фоточувствительные элементы представляют собой n^+-p -фотодиоды, созданные ионной имплантацией методом самосовмещения со структурой изолирующего затвора (рис. 1, а, б). Соответствующий сигналу насыщения зарядовый пакет, накопленный на сравнительно большой емкости обратносмещенного *p*-*n*-перехода фотодиода, мало меняет приложенный к нему потенциал. Это позволяет упростить конструкцию фоточувствительного накопителя по сравнению с К1200ЦДЛ5, сохранив в ней только разрешающий затвор, который и задает исходный потенциал обеднения фотодиодов (рис. 1, в). Такое конструктивное решение позволило вы-полнить микросхемы К1200ЦЛ7 и К1200ЦЛ71 по традиционной двухуровневой поликремниевой технологии со скрытым каналом. Изоляция активных элементов схемы (кроме фотодиодов), выполненная методом локального окисления кремния, в совокупности с ужесточением конструктивно-технологических допусков позволила поднять чувствительность выходного устройства до мкВ/электрон и улучшить некоторые

параметры	лфмэс	по	сравне	нию	с
К1200ЦЛ5	. Основные	пар	аметры	разр	a-
ботанных	микросхем	при	ведены	ниж	e.

Размеры фоточувствительного
элемента, мкм
Шаг элемента, мкм 13
Максимальная частота вывода
сигнала, МГц 10
Интегральная чувствительность,
В/Вт. м ⁻² 16
Напряжение насыщения, В 1,4
Относительная неравномерность
выходного сигнала, % 12,5
Относительная неравномерность
темнового сигнала, %
Коэффициент передачи
модуляции, %
Квазипиковое напояжение
темнового шума, мВ2

Примечание. По каждому регистру $j_{\rho} = = 2,5$ МГц, $l_{\text{нак}} = 1$ мс, $T_{\text{ок}\rho} = 25 \pm 5^{\circ}$ С.

Функциональная схема К1200ЦЛ7 и К1200ЦЛ71 представлена на рис. 2; назначение выводов — в таблице. Накопленные фотогенерированные зарядовые пакеты методом черезэлементной разборки передаются в двухфазные сдвиговые

ПЭС-регистры при приложении высокого потенциала к разрешающему затвору на время, максимально допустимое для конкретного применения, с целью снижения неэффективности параллельного переноса. Каждый регистр оснащен двухзатворным входным устройством, носящим тестовый характер, и защищен узким внешним ПЗС-регистром от натекания паразитных носителей с периферии кристалла. Выходное устройство каждого регистра представляет собой традиционный двухкаскадный истоковый повторитель с транзистором выборки-хранения между каскадами. Отдельные выводы стока транзисторов сброса, истока и затворов нагрузочных транзисторов

Іомера ыводов	Обозначе- ние на схеме	Функциональное назначение	31 Па Ра
1	31	Первый входной зат- вор, общий	0
2	ЗР	Затвор разрешаю- щий, общий	л
3	32P2	Второй входной зат- вор второго регистра	
4	Φ2Ρ2	Вторая фаза второго регистра	н N
5	Φ1 Ρ2	Первая фаза второго регистра	п
6	3 C2	Затвор сброса второ- го осгистоа	н К
7	33	Затвор третий выход- ной. общий	n ir
8	3B2	Затвор выборки— хранения второго ре- гистра	aι ρ.
9	C2	Сток транзисторов второго регистра	
10	3H2	Затвор нагрузочных транзисторов второго регистра	
11	B2	Выход второго ре- гистра	-
12	и	Исток транзисторов, общий	
13	CC	Сток транзисторов сбооса, общий	
14	B1	Выход первого реги-	
15	3H1	Затвор нагрузочных транзисторов первого регистра	и
16	C1	Сток транзисторов пеового регистоа	
17	3B1	Затвор выборки— хранения первого ре- гистра	П
18	зи	Затвор изолирующий, общий	K
19	3C1	Затвор сброса пер-	
20	ወ1ዖ1	Первая фаза первого регистра	СК
21	п	Полложка	ф
22	ወ2ዖ1	Вторая фаза первого регистра	пр
23	32P1	Второй входной зат-	Пе
24	Д	Диод входной, общий	1"

обоих каскадов каждого Выходного устройства позволяют осуществить выбор оптимальной рабочей точки схемы и свести к минимуму разбаланс выходных сигналов по регистрам.

На рис. З представлена тактовая диаграмма работы ЛФМЗС, спектральная характеристика — на рис. 4.

Следует отметить, что разрешающий затвор, являющийся обычно только ключевым элементом в $\Lambda OM3C$, в данном случае способен корректировать в некоторой степени чувствительность в области больших длин волн излучения, так как его потенциал определяет глубину обедненной области p-n-переходов фотодиодов.

Линейные высокоапертурные ФМЗС найдут широкое применение в прецизионной контрольно-измерительной аппаратуре, робототехнике, приборах спектрального анализа, акустооптике и других областях народного хозяйства.

литература

1. Полупроводниковые формирователи сигналов изображения/Под ред. П.Иесперса и др., пер. с англ. под ред. Р.А.Суриса.— М.: Мир, 1979, ч. VI, с. 576. 2. Костюков Е.В., Павлова З.В., ПрессФ.П. Линейные фоточувствитель-

2. Костюков Е.В., Павлова З.В., ПрессФ.П. Линейные фоточувствительные микросхемы с зарядовой связью К1200ЦЛ5 и К1200ЦЛ6.— Электронная промышленность, 1987, № 3, с. 19—22.

промышленность, 1987, № 3, с. 19—22. 3. A polysilicon isolated photodiode array mager/N.Kadekodi, S.Law, Ch.Chang, M.Lo und A.Ibrahim.— IEEE, IEDM81, 1981, 5. 483—486.

УДК 621.3,049.77.001.2

МИКРОСХЕМА КР1810ВК56— МНОГОФУНКЦИОНАЛЬНЫЙ УНИВЕРСАЛЬНЫЙ ПЕРИФЕРИЙНЫЙ КОНТРОЛЛЕР

BOAOB

И.В.Джуранюк, С.В.Дружук, Ю.П.Парамонов

Микросхема КР1810ВК56 предназначена для создания на ее базе малогабаритных гибких и высокопроизводительных микропроцессорных систем, а также для увеличения эффективности существующих систем путем объединения в одном корпусе четырех контроллеров периферии: КР580ИК51, КР580ИК55, КР1810BH54 и КР1810BH59.

Микросхема обеспечивает выполнение следующих функций:

 программируемого последовательного асинхронного интерфейса с разряд-

> Назначение и обозначение выи микросхемы КР1810ВК56

Номер Обозначение Функция вывода ADB0-1-5 Канал адреса-ADB4 данных DB5-DB7 6-8 Канад данных Строб адреса CA RD 10 Чтение WR 11 Запись 12 Сброс или уста-SR новка в исходное состояние CS 13 Выбор микросхемы INTA Подтверждение 14 запроса прерывания INTR 15 Запрос прерывания EXTINT 16 Внешнее прерывание 17 C Тактовый импульс RXC 18 Синхронизация приемника 19 RXD Вход приемника 20 OV Общий вывод CTS 21 Готовность поиемника терминала TXC 22 Синхронизация передатчика TXD 23 Выход передатчика P27-P20 24-31 Порт 2 32-39 Порт 1 P17-P10 40 Напояжение Ucc питания

ностью информационного кода 5, 6, 7 или 8 бит, генерацией бита приоритета, стоп-бита, равного 1, 1,5 или 2 битам информации;

 последовательного приемопередатчика со скоростью обмена до 19,2 Кбит/с без использования внешней синхронизации и 1 Мбит/с при использовании внешней синхронизации;

 пяти программируемых восьмиразрядных таймер-счетчиков, причем четыре последние могут быть каскадированы в два шестнадцатибитных таймер-счетчика;

 двух программируемых восьмибитных параллельных порта ввода/вывода, причем порт 1 может быть запрограммирован для квинтирования порта 2 и выполнения функций счетчика входных событий; каждый из восьми бит порта 1 может быть индивидуально запрограммирован как на ввод, так и на вывод, а восемь бит порта 2 могут объединяться по 2×4 раздельных бита и индивидуально программироваться на ввод или вывод;

программируемого восьмиуровневого контроллера прерываний, который может программироваться для работы с микропроцессором КР 1821ВМ85.

Обеспечена возможность сопряжения микросхемы с микропроцессорами КР1810ВМ86 (КР1810ВМ88), КР1821ВМ85, с микроЭВМ КР1816ВЕ48 (КР1816ВЕ51).

Электрическая структурная схема микросхемы КР1810ВК56 приведена на рис. 1, типовые схемы ее включения на рис. 2 и 3, назначение и обозначение выводов — в таблице.

Микросхема КР 1810ВК56 выполнена по *п*-МОП-технологии и собрана в 40выводной пластмассовый корпус.

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Электрические параметры микросхем в диапазоне температур от —10 до 70°С

Папряжение питания, В
Входное напряжение, В
высокого уровня, не менее
низкого уровня, не более 0,8
Выходное напряжение, В
высокого уровня, не менее 2,4
низкого уровня, не более 0,45
Ток потребления, мА, не более 170
Выходной ток
высокого уровня, мкА,
не более
низкого уровня, мА, не более 2,5
Частота следования импульсов
тактовых сигналов, МГц, не более 5,12
Емкость нагрузки, пФ, не более 150

ДЕПОНИРОВАНИЕ

В.Ф. Махров, Ю.М.Иванова. Отказы многослойных печатных плат, изготовленных методом металлизации сквозных отверстий. — 27 с. (Рукопись деп. в ЦНИИ "Электроника", 1990 г., № Р-5292).

Приводится каталог наиболее распространенных дефектов и отказов многослойных печатных плат (МПП), включающий сведения о причинах дефектов, отказов и о механизмах отказов МПП. а также рекомендации по устранению и предотвращению этих отказов. Каталог содержит также определение и критерий отказа МПП, распределение омического значений сопротивления межслойных соединений МПП выборки серийно изготавливаемых плат и значения интенсивности отказов МПП и интегральных микросхем, полученные по результатам обработки статистических данных об отказах типовых эле-ментов замены (ТЭЗ) трех больших ЭВМ в течение трех лет подконтрольной эксплуатации.

УДК 621.3.049.75-419:620.19

Н. А. Брюхно, Ш. М. Гасанли, З. Н. Кобазева, Н. Л. Медведева, А. К. Стрельцов. Влияние анизотропного травления на механическую прочность пластин монокристаллического кремния. — 6 с. (Рукопись деп. в ЦНИИ "Электроника", 1989 г., № Р-5291).

Исследуется влияние обработки в щелочном травителе пластин кремния с ориентацией поверхности (111), (100) и (110) на величину механической прочности.

Показано, что зависимость механической прочности кремниевых пластин от времени травления в щелочном травителе имеет сложный характер: с увеличением времени травления прочность растет, достигает максимума и затем уменьшается и принимает значения меньшие, чем предел прочности.

Сложная зависимость механической прочности от времени травления в анизотвопном травителе объясняется изменением параметров микрорельефа и поверхности нарушенного слоя пластин кремния в процессе травления.

Показано, что высокотемпературная термообработка увеличивает механическую прочность пластин кремния.

УДК 537.226.86

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

УДК 681.326.35:621.382.822

ЦИФРОВАЯ БИС МУЗЫКАЛЬНОГО СИНТЕЗАТОРА С АВТОМАТИЧЕСКОЙ ПОДСТРОЙКОЙ ЧАСТОТЫ ТАКТОВОГО ГЕНЕРАТОРА

М.М.Иванковский, Б.Н.Иванов, А.В.Ивановский, А.К.Лапиньш

Цифровая БИС музыкального синтезатора и измерительно-вычислительная система для ее контроля позволяет производить подстройку частоты тактового генератора БИС непосредственно на пластине в процессе функционального контроля. В цифровой БИС используется тактовый генератор, построенный по кольцевой схеме, что позволяет отказаться от внешних времязадающих элементов и, в свою очередь, повышает функциональную законченность микросхемы и позволяет уменьшить число используемых выводов.

Частота генерируемых колебаний F определяется соотношением:

 $F=1/t_3 \cdot n$

где l_э — величина задержки одного элемента, *n* — число элементов в схеме кольцевого генератора.

Недостаток генератора этого типа возможность отклонения фактического значения частоты от расчетного из-за разброса значения /з в процессе производства БИС. В связи с этим в разработанной цифровой БИС предусмотрена возможность подстройки тактовой частоты путем изменения числа элементов (инверторов) в кольцевом генераторе. Данная операция выполняется автоматически измерительно-вычислительной системой (ИВС) в процессе зондового контроля одновременно с изменением электрических параметров и функциональным контролем микросхемы.

Микросхема представляет собой функционально законченную БИС, выполненную по КМОП-технологии с локальным окислением и самосовмещением областей стоков, истоков и с поликремниевыми затворами.

Структурная схема тактового генератора представлена на рис. 1. При подаче на управляющие входы генератора определенной кодовой комбинации последняя преобразуется дешифратором в код «1» из «4», который управляет коммутатором. обеспечивая полключение кольшевого генератора одного из отводов цепочки инверторов. Таким образом, изменяя кодовые комбинации на управляющих входах, можно дискретно изменять частоту тактового генератора БИС. Контроль частоты осуществляется на специальном выводе. Кодовая комбинация. соответствующая номинальному значению частоты тактового генератора в пределах

установленных допусков, автоматически записывается в электрически программируемые узлы (ЭПУ).

Электрическая схема ЭПУ и устройства программирования, являющегося составной частью ИВС, представлены на рис. 2. Узел ЭПУ представляет собой делитель напряжения, выполненный на комплементарных МОП-транзисторах, соединенных плавкой перемычкой. Геометрия транзисторов выбрана таким образом, что сопротивление *р*-канального транзистора VT1 примерно в 20 раз превышает сопротивление *n*-канального транзистора VT2. При рабочем напряжении БИС 1,5 В в точке соединения транзисторов устанавливается потенциал, равный 40 мВ, что воспринимается входом дешифратора как логический «О». При пережигании перемычки вход дешифратора оказывается через транзистор VT1 подключенным к шине питания БИС, что воспринимается как логическая «1».

Программирование ЭПУ и контроль программирования производятся следующим образом. При подаче от ИВС сигнала ПУСК одновибратор G1 вырабатывает импульс, задающий длительность пережигающего токового импульса. Величина программирующего тока задается источником стабильного тока CT1 и транзисторами VT3, VT4, образующими схему «токовое зеркало».

В режиме программирования переклю-

Рис. 2. Электрическая схема ЭПУ и устройства программирования

Рис. 3. Разрез плавкой перемычки: 1 — креминевая подложка, 2 — изолярующий окисса, 3 — поликреминевая шина, 4 — межслойный диэлектрик, 5 — алюминиевая плавкая перемычка, 6 — защитный низкотемпературный окисса.

чатели SA2—SA3 устанавливаются в положение 2. В случае необходимости запрограммировать данный узел подается сигнал ПУСК. При этом импульс тока от транзистора VT3 пережигает перемычку FU, и на синхровходе триггера ТТ появляется импульс, устанавливающий триггер в состояние «лог. 1», что является признаком осуществления программирования. В случае несрабатывания триггера подается второй импульс ПУСК и процесс повторяется. При измерении электрических параметров БИС пере-ключатели SA1—SA3 находятся в положении 1. Амплитуда импульса тока 400 мА, длительность импульса 1 м.с. На рис. 3 представлен разрез плавкой перемычки — программируемого элемента ЭПУ. Перемычка выполнена в слое алюминиевой разводки БИС без использования каких-либо дополнительных технологических операций. Ширина перемычки в месте пережигания 6 мкм. Алюминий напылен на поликремниевую ступеньку высотой 0,4 мкм, что позволяет уменьшить толщину перемычки с 1,35 до 0,95 мкм. Другой особенностью ЭПУ является наличие окна в слое защитного низкотемпературного окисла для уда-ления испаряющегося в процессе пережигания материала перемычки.

ЛИТЕРАТУРА

1. Thomas M., Frederiksen. A single-chip all-bipolar cameracontrd integrated circuit.— IEEE J. of Solid-State Circuits, DEC, 1977, vol. SC-12, N 6.

2. A t k i n s R.C. Programming short and open circuits in an IC by applying current pulsec.— J. of Semicustom IS's, 1987, vol. 4, N 3.

САРАТОВСКИЙ НИТИ

ПРЕДЛАГАЕТ

специальное технологическое оборудование для применения в приборостроении, электронном и точном машиностроении

модульный комплект сборочного оборудования

Сборочные роботы МАРС транспортно-накопительные устройства

для сборки и контроля печатных плат, изготовления микросборок, для механической сборки деталей и узлов в приборостроении

КОМПЛЕКС ОТДЕЛОЧНО-ЗАЧИСТНОГО ОБОРУДОВАНИЯ

для создания специализированных зачистных участков или автономной эксплуатации в линейных, штамповочных, гальванических, механообрабатывающих и других цехах

КОМПЛЕКС ГАЛЬВАНИЧЕСКОГО ОБОРУДОВАНИЯ

Линия гидроабразивной зачистки ЛГ-901

для зачистки отверстий печатных плат перед металлизацией

Установка для регенерации щелочного травильного раствора УРТ-901

для восстановления рабочих свойств раствора в целях поддержания постоянной скорости травления

Линия щелочного травления ЛТ-901

для формирования проводящего рисунка стравливанием медной фольги с незащищенных металлорезистом участков заготовок печатных плат

Подробную информацию можно получить по телефонам: 25-57-50, 25-83-77, 25-83-32, 25-83-50 С предложениями просим обращаться по адресу: 410071 г. Саратов, ул. Шелковичная, 186, НИТИ.

МОДУЛЬНЫЙ КОМПЛЕКТ СБОРОЧНОГО ОБОРУДОВАНИЯ

ПОЗВОЛЯЕТ СОЗДАВАТЬ АВТОМАТЫ, УНИВЕРСАЛЬНЫЕ И СПЕЦИАЛИЗИРОВАННЫЕ ЛИНИИ С МИНИМАЛЬНЫМИ ЗАТРАТАМИ НА ИХ ПРОЕКТИРОВАНИЕ, ИЗГОТОВЛЕНИЕ И НАЛАДКУ.

МОДУЛЬНЫЙ КОМПЛЕКТ включает сборочные роботы и транспортно-накопительные устройства. Обеспечивает их функциональную и конструктивную совместимость для комплексной или автономной работы по усмотрению заказчика.

РОБОТЫ МАРС имеют однорукое и двурукое исполнение.

ЛИНЕЙНЫЙ ДВИГАТЕЛЬ выполнен в виде автономного координатного стола СКР-901.

Основные характеристики робота МАРС-901

 Номинальная грузоподъемность, кг
 2,5

 Размеры рабочей зоны, мм
 550×300×25

 Скорость перемещения, м/с
 0,6

 Погрешность позиционирования, мм
 0,005

 Шаг перемещения, мм
 0,01

ТРАНСПОРТНО-НАКОПИТЕЛЬНЫЕ УСТРОЙСТВА работают с унифицированной ячеистой тарой (кассетой) как в режиме загрузки-выгрузки (КМП-901, КМП-902), так и в режиме со сквозным транспортированием (МТН-901, МТН-902).

БАЗОВОЙ ОСНОВОЙ транспортно-накопительных устройств является двухленточный транспортер ТЛ-901, на который устанавливаются фиксаторы кассет, устройства их поштучного разделения и промежуточного накопления.

УПРАВЛЕНИЕ транспортно-накопительными устройствами осуществляется от системы управления робота МАРС или от собственной автономной системы управления. Элементы функционируют независимо или объединяются в разветвленную транспортную систему.

Основные характеристики транспортно-накопительных устройств КМП и МТН

абаритные размеры унифицированной тары, мм	220(320)×220×1550
мкость накопителя, кассет	до 20
время замены кассет на позиции, с	614

ПРОМЫШЛЕННЫЙ ВЫПУСК модульного комплекта освоен в 1988 г. НА БАЗЕ МОДУЛЬНОГО КОМПЛЕКТА созданы и освоены в промышленности автоматы и линии: для установки на платы элементов с планарными и осевыми выводами в DIP-корпусах — АСП-902П, АСП-903Р, АМД-901; поверхностного монтажа — МПЭ-901, механической сборки — ЛСП-901, СМП-901.

Основные характеристики автомата сборки плат АСП-902П

Тип устанавливаемых корпусов

Выполняемые функции

401.14, 402.16, 405.24, 429.42 (ГОСТ 17467-79) выбор микросхем; дозированное нанесение клея на плату или дно микросхем; установка микросхем на плату с ориентацией по ключу; пайка выводов микросхем (импульсная) 500...600 до 200 × 270

Производительность, постановок/ч Габаритные размеры плат, мм

Транспортно-накопительный модуль МТН-902

Кассетный питатель КМП-901

Автомат сборки и пайки АСП-902П

Робот МАРС-902

КОМПЛЕКС ОТДЕЛОЧНО- ЗАЧИСТНОГО ОБОРУДОВАНИЯ

Параметры оборудования			Габаритные размеры обрабатываемых деталей, мм	
Наименование	Габаритные размеры, мм	Ориентиро- вочная стои- мость, тыс.руб.		
Установка зачистная центробежная УЗЦ-901	1420×960×1607	7,0	(5 60) × (5 60) × (0,3 60)	
Установка зачистная центробежная УЗЦ-901Б	2190×1875×1785	18,0	(30 250) · (30 250) · (0 ,5 - 200)	
Установка зачистная центробежная УЗЦ-902	1160×750×1200	10,0	(2 30)×(2 30)×(0,3 30)	
Установка виброхимического удаления заусенцев УВЗ-901А	630×460×1330	5,0	(1 30)×(1 30)×(0,05—30)	
Установка виброзачистная полировальная ПВД-901	900×700×1100	6,0	(3-80)×(3-80)×(0,3-80)	
Разделитель деталей и абразива РД-901Р	1500×950×1040	6,0	(3 80)×(3 80)×(0,3 80)	
Станок автоматизированной зачистки тон- колистовых деталей САЗ-901	1150×600×1050	6,0	(20—125)×(20—125)× ×(0,1−0,35)	
Станок зачистки печатных плат СПЗ-901	1440×1140×1680	10,0	(160 600) × (180 500) × × (1,5 + 0,5)	
Установка пневмоструйной обработки де- талей ПДУ-901	1400×1000×1870	8,0	(5 300)×(5 300)×(5 300)	

Оборудование разработано на основе опыта многолетней работы с заинтересованными потребителями и эксплуатируется на 135 предприятиях 11 отраслей народного хозяйства.

ВНЕДРЕНИЕ КОМПЛЕКСА ПОМОЖЕТ ВАМ:

 перевести на механизированную зачистку 35—40% всей номенклатуры литых, штампованных и механообработанных деталей, в том числе прецизионных;

— высвободить значительное количество рабочих, занятых на ручных зачистных операциях;

— улучшить условия труда и культуру производства.

ЛИНИЯ ГИДРОАБРАЗИВНОЙ ЗАЧИСТКИ ЛГ-901

Перемещение печатных плат через зоны обработки осуществляется горизонтальным двухрядным валковым конвейером.

Обработка печатных плат производится струями гидроабразивной суспензии, не разбавленными воздухом; из-за отсутствия нагнетания в рабочую камеру сжатого воздуха через форсунки значительно снижены уровень шума и содержание гидроабразивной пыли в зоне обслуживания линии.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Производительность, м ² /ч	15.0
Размеры обрабатываемых плат, мм	13,0
максимальные	600×600
минимальные	150×150
Пределы регулирования скорости конвейера, м/мин	0.1_1
Расход сжатого воздуха при давлении 0,5 МПа, м ³ /мин	12
Потребляемая мощность, кВ А	0,5
Габаритные размеры линии, мм	1910×1295×1482
Масса, кг	900

Линия снабжена регенератором—отстойником абразива. Конструкция регенератора позволяет легко извлекать отстоявшийся абразив.

линия щелочного травления ЛТ-901

Применение оригинальной системы распыления рабочих растворов позволяет, благодаря равномерному поливу и интенсивному массообмену на поверхности заготовок печатных плат, обеспечить качественную и высокопроизводительную обработку заготовок. Перемещение печатных плат осуществляется горизонтальным двухрядным валковым конвейером с бесступенчатым (с помощью вариатора) регулированием скорости. Баки линии выполнены из титана.

Благодаря простой конструкции линия обладает высокой надежностью, ремонтопригодностью, удобна в обслуживании. Из агрегатов, входящих в состав линии ЛТ-901, могут быть скомпонованы линии для проявления или удаления фоторезистов, химической подготовки и других операций струйной химической обработки.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Производительность, м²/ч Размеры обрабатываемых плат, мм максимальные минимальные Потребляемая мощность, кВ-А Габаритные размеры, мм Масса, кг

600×600 120×120 13 3480×1200×1200 800

25,2

установка для регенерации щелочного травильного раствора УРТ-901

Работает в рецикле с линией щелочного травления ЛТ-901 и другими установками для щелочного травления типа УХО-902, КМ-1, а также с установками фирм «Реско», «Кемкат» и др.

За счет электролитического осаждения меди на вращающемся катоде и ее автоматического съема обеспечивается непрерывный цикл работы травильного комплекса.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Производительность (по извлечению меди), г/ч Плотность тока, А/дм² Режим работы Расход водопроводной воды, м³/ч Габаритные размеры установки, мм 2000 33 автоматический 25 1500×1500×1200

Внедрение установки и техпроцесса регенерации щелочного травильного раствора обеспечивает экономню материальных ресурсов, снижение трудоемкости операции травления, улучшает экологичность производства печатных плат.

УДК 681.325.5—181.4

ВОСЬМИРАЗРЯДНЫЙ КМОП-МИКРОПРОЦЕССОР КМ1821ВМ85А

А.А.Кассихин, Н.М.Катомин

Восьмиразрядный высокопроизводительный однокристальный статический микропроцессор (МП) КМ1821ВМ85А (КР1821ВМ85) изготовлен по КМОПтехнологии.

Размещенные на кристалле арифметико-логическое устройство, блок регистров, блок синхронизации и управления, блок управления прерываниями, внутренний тактовый генератор и др. образуют процессорное устройство с развитым набором команд и наделенное широкими возможностями по управлению микропроцессорной системой (см. рисунок). Микропроцессор КМ1821BM85A собран в корпусе 2123.40-6, а КР1821BM85—

ран в корпусе 2123.40-6, а КР 1821ВМ85 в корпусе 2123.40-1. Назначение выводов МП показано в таблице.

Ниже дано краткое описание структурной схемы МП. Арифметико-логическое устройство параллельное, восьмиразрядное, выполняет арифметические и логические операции, операции сдвига и управления, предусмотренные системой команд. Аккумулятор, пред-назначенный для хранения пересылаемых данных и результатов операций арифметико-логического устройства, представляет собой восьмиразрядный программно-доступный регистр данных, взаимодействующий с блоком регистров общего назначения и другими функциональными узлами микропроцессора. Регистр временного хранения является вспомогательным восьмиразрядным регистром, который используется только в течение времени исполнения некоторых команд. Программно-доступный регистр признаков предназначен для внутренней фиксации характеристик результатов операций и состояний арифметикологического устройства. В этот регистр входят семь триггеров признаков: знака, переноса, вспомогательного переноса, нуля, четности, переполнения, вспомогательного знака. Восьмиразрядный регистр команд используется для хранения выбранной команды для дешифратора команд, шифратора машинных циклов и других блоков.

Дешифратор команд осуществляет дешифрацию кодов команд из регистра команд и производит установку шифратора машинных циклов в соответствии с этими кодами. Блок регистров предназначен для хранения, обработки и выдачи различной информации, участвующей в процессе выполнения команд.

Буфер старших разрядов адреса представляет собой 8-разрядный выходной формирователь с тремя состояниями, переключаемый в третье высокоимпедансное состояние во время действия сигналов SR, RQM или команды «Останов». Буфер адрес—данные представляет собой 8-разрядный входной—выходной формирователь с тремя состояниями, предназначенный для выдачи либо младших разрядов адреса, либо приема выдачи данных.

Блок синхронизации и управления обеспечивает внутреннюю синхронизацию МП и выдачу внешних сигналов, необходимых для работы с другими устройствами. Внутренняя синхронизация МП осуществляется от собственного тактового генератора, возбуждение которого задается внешним кристаллическим квар-

Структурная схема микропроцессора

Номер вывода	Обозначение	Выполняемая функция
1	BQ1	Подключение кварцевого резонатора
2	BQ2	RC-цепи, LC-цепи или внешнего генератора
3	SRS	Выход «Начальная установка системы»
4	TFD	Выход «Передача последовательных данных»
5	RCD	Вход «Прием последовательных данных»
6	INR5	Вход «Прерывание 5»
7	INR4	Вход «Прерывание 4»
8	INR3	Вход «Прерывание 3»
9	INR2	Вход «Поерывание 2»
10	INR1	Вход «Посрывание 1»
11	AKINR1	Выход «Подтвеождение посомвания 1»
12-19	AD0-AD7	Вход—выход «Данные—адрес», с тремя состояниям
20	ov	Общий
21-28	A8—A15	Выход «Адрес», с тремя состояниями
29	SAO	Выход «Состояние»
30	EWRA	Выход «Разрешение записи адреса»
31	WR	Выход «Запись», с тремя состояниями
32	RD	Выход «Считывание», с тремя состояниями
33	SA1	Выход «Состояние»
34	E 10	Выход «Разрешение обращения к устройствам вво- да—вывода», с тремя состояниями
35	RA	Вход «Готовность»
36	SR	Вход «Установка процессора в исходное состояние»
37	С	Выход «Тактовая частота»
38	AKRQM	Выход «Подтверждение запроса прямого доступа к памяти»
39	RQM	Вход «Запрос прямого доступа к памяти»
40	llcc	Питания

Примечание: Каждый выход с тремя состояниями имеет маломощную триггерную защелку, исключающую неопределенность потенциала на выводе в третьем состоянии.

цевым резонатором, RC-цепочкой или LC-цепочкой, подключаемым к выводам BQ1, BQ2 (допускается подключение внешнего источника тактовых сигналов к выводу BQ1 либо к выводам BQ1 и BQ2). Частота входного сигнала внутренними схемами делится на 2 и используется для синхронизации узлов МП и внешних устройств системы с использованием вывода C.

Блок управления прерываниями переключает микропроцессор с выполнения одной программы на выполнение другой при поступлении внешних сигналов прерывания и позволяет вводить не менее пяти уровней прерывания. Блок последовательного ввода—вывода управляется командой R/M при вводе последовательных данных и командой S/M при выводе последовательных данных и командой S/M при выводе последовательных данных и осуществляет ввод одноразрядных данных от входа RCD в старший разряд аккумулятора или вывод одноразряда аккумулятора TD.

При выполнении любой программы микропроцессором производится исполнение отдельных команд, составляющих программу. Исполнение команды сопровождается операциями считывания или записи. Каждая из этих операций выполняется в течение машинного цикла *М*. Количество машинных циклов и их сущность определяется кодом операции (команды), который задается в первом машинном цикле. Общее количество машинных циклов в команде может быть от одного до пяти.

Машинный цикл обычно длится в течение трех тактовых периодов, за исключением цикла чтения кода операции, который может быть длиной четыре или шесть тактовых периодов (тактовый период равен периоду тактовой частоты на выводе). Реальное число тактовых периодов при выполнении какой-либо команды определяется выполняемой команды, количеством тактовых периодов в цикле чтения кода операции и числом тактовых периодов ожидания, которые формируются, пока на входе «Готовность» остается низкий уровень сигнала.

Полная система команд микропроцессора содержит 123 команды, которые объединяются в следующие группы:

команды пересылки и загрузки;
 пересылки в стек и загрузки из стека;

 ветвления и переходов к подпрограммам;

ехнические	характеристики
икропроцессор	a KM1821BM85A
(KP18)	21BM85)*

Основная разоялность
данных
адреса
Число программно-доступных
регистров, включая регистры
общего назначения (РОН) 1(
Разрядность программно-доступных
регистров 16 (два регистра)
8 (шесть РОН могут
объединяться в тон
16-разрядные регист-
ровые пары)
Число устройств, адресуемых
командами ввода — вывода
Объем адресуемой памяти (Кбайт) 64
Число уровней прерывания, не менее 5
Общее количество команд 123
Минимальное время выполнения
команды, мкм
типа «R—R» 1,2(0,8)
типа «R—M»
Частота следования импульсов
тактового генератора, МГц, не более
на выходе
на входе
Напряжение питания, В 5,0±10%
Гок потребления
динамический, мА, не более 20(22)
статический, мкА, не более 100

* Для микросхемы КР1821ВМ85 значения параметров приведены в скобках.

возврата и повторного запуска;
 ввода—вывода;

 арифметических и логических операций, сдвига и инкрементирования декрементирования;

— специальные команды и команды управления.

Длина команды может составлять один, два или три байта. Адрес первого байта является адресом команды, поэтому многобайтовая команда должна храниться в последовательных ячейках памяти. Команды микропроцессора выполняют операции над одним или двумя операндами, используя в зависимости от команды следующие типы адресации:

— прямая — байт 2 и байт 3 команды содержат адрес памяти, где хранятся данные (байт 2 — младший байт адреса, байт 3 — старший байт адреса);

— регистровая — командой определяется регистр или пара регистров, в которых размещены данные;

— косвенная регистровая — командой определяется пара регистров, содержащих адрес ячейки памяти, в которой записаны данные (старший байт в первом регистре, младший — во втором регистре);

— стековая — адрес данного содержится в указателе стека;

— непосредственная — команда содержит данные.

Система команд данного микропроцессора включает в неизменном виде систему команд микропроцессора КР580ВМ80 и расширена путем введения новых 12-ти команд.

УДК 681.326.74.06

КОНТРОЛИРУЮЩИЙ ТЕСТ ДЛЯ МИКРОПРОЦЕССОРНЫХ СИСТЕМ

Н.П.Горлова, Л.А.Летник, А.Ю.Самоукин

Создание пакета программ позволяет автоматизировать процесс разработки тестовых последовательностей для контроля микропроцессорных систем (МПС) [1].

Суть тестирования состоит в определении исправности отдельных БИС путем выполнения тестовой программы. Основные требования к тестовым про-граммам — мелкий объем памяти, занимаемой программой, и минимальное время тестирования при высокой достоверности контроля. Общий подход к созданию систем тестирования заключается следующем: исправность отдельной БИС проверяется небольшими по объему контролирующими тестами; более сложная диагностическая программа на базе результатов контролирующих тестов позволяет судить о работоспособности всей МПС.

Контроль однородных мульти-микропроцессорных систем МПС осуществляется, как правило, с помощью контролирующих тестов, включаемых периодически по сигналам таймера. Вся информация после тестирования собирается в отдельный массив, который обрабатывается резидентным МП, а результат либо инициирует реконфигурацию МПС (в случае выхода из строя одного из МП), либо система продолжает работать без изменения.

Пакет программ разработки тестов включает следующие модули: генератор контролирующей кодовой последовательности, дизассемблер, программный эмулятор и сервисные программы.

Контролирующая кодовая последовательность состоит из набора разрешенных команд тестируемого МП. В кодовой последовательности представлены не все команды, а только наиболее часто используемые. Будем считать, что все внешние устройства на время тестирования отключены, а порядок следования байтов последовательности произвольный. Случайная последовательность байтов, отождествляемая с командами МП после ее выполнения на заведомо исправном МП, дает результат, который считается эталонным. Данная последовательность может быть получена при помощи программной реализации сдвигового регистра с обратными связями. Достоинство такого способа состоит в том, что для программной реализации регистра необходимо выполнить небольшое число операций: загрузить в

моделируемый регистр исходное число, выполнить операцию маскирования, позволяющую выделить единичные разряды, обусловленные производящим полиномом. получить сумму по mod 2 выделенных разрядов и эту сумму записать в младший разряд регистра после сдвига содержимого. Все эти операции надо объединить в цикл и после каждого его выполнения результат пересылать в ЗУ, где будет накапливаться тестовый массив.

Для упрощения получения тестовой последовательности необходимо иметь несколько тестов, причем общее число команд в этих тестах должно содер-жать 50, 75 и 95% от общего числа команд МП. В тест не должны входить команды, запрещенные для данного типа МП. Часто используемые команды определяются путем анализа репрезентативной выборки из 5000 команд рабо-чих программ МП КР580. Результаты подсчета представлены ниже:

№	Команда	№	Команда	
1	CALL	11	СРІ	
2	MOV	12	OUT	
3	MVI	13	ANI	
4	LXI	14	DCR	
5	ЈМР	15	LHLD	
6	JNZ	16	DCX	
7	РОР	17	IN	
8	INX	18	JNC	
9	RET	19	STA	
10	РИСН	20	LDA	

Во все тесты должны обязательно входить следующие типы команд: CALL, MOV, JMP, JNZ, РОР, РUCH, IN, OUT, ANI.

Массиву для этих «весьма желательных» команд присвоено обозначение — ARREY WISH CONNECT, причем сокращенная форма записи для различных типов МП такова: CON80, CON48, CON51

Считается допустимым, если в тест не войдет около трети команд из массива CONNECT для каждого МП, что составит М80=6, М48=3, М51=3.

Массив запрещенных кодов, или ARREY VETO, имеет сокращенную запись VET80, VET48, VET51.

Для организации простых или укороченных тестов необходим еще один мас-сив ARREY FACULTATIVE (сокращенно — FAC). В него входят любые коды кроме кодов из массива VETO, причем тесты различного объема и различных типов МП должны содержать следующее число команд:

для KP580 TEST 50%=122,

микропроцессорные СРЕДСТВА И СИСТЕМЫ _

TEST 75%=183, TEST 95%=232; - _{*A*_A*x*} K1816BE48 TEST 50%=130, TEST 75%=175, TEST 95%=219; - _{*A*_A*x*} KP1816BE51 TEST 50%=128, TEST 75%=192, TEST 95%=243.

Рассмотрим алгоритм формирования ARREY Пусть подпрограмма COMMAND (сокращенно COM) формируется из однобайтных слов, полученных при помощи регистра сдвига, а мас-сивы ARREA VETO, CON и FAC для заданного МП уже сформированы. Первый элемент ARREA COMMAND отсылается в блок проверки наличия аналога в ARREA VETO. Если подобное слово обнаруживается, то из ARREA СОММАND выдается следующее слово, а предыдущее отбрасывается и т.д. Если же такое слово в ARREA VETO отсутствует, то программа переходит к поиску аналога этого же слова в ARREA WISH CONNECT. Если это же слово отсутствует и в WISH CONNECT, то к содержимому счетчика М прибавляется 1. Если в тестовой программе не будет трети слов из этого массива, то такой тест еще можно использовать, в противном случае на экран дисплея выводится запрос ПРОДОЛЖИТЬ ПОИСК?

После принятия решения о продолжении поиска в счетчик вносится 1. Если его содержимое равно, например, 120, то на экран выводится сообщение TEST50 ПРОШЕЛ, а если в процессе анализа значений из ARREA COMMAND выясняется, что этот код обнаружен в запрещенном массиве ARREA VETO, то осуществляется сброс счетчика TEST50 в ноль. Если за 183 шага из ARREA COMMAND не появилось ни одного запрещенного кода, то принимается решение о том, что прошел TEST75, если прошло 232 слова — то прошел TEST95.

Работа программы продолжается до олного перебора всех значений полного COMMAND, получаемых при помощи каждого неприводимого многочлена [2].

На основании рассмотренного алгоритма была составлена программа, и в результате ее работы были получены тесты для МП всех трех типов, которые формально удовлетворяют поставленным требованиям. Первые 10 элементов этого теста приводятся ниже:

TEST95 KP580:37 FF 6F DE DF BD BF 7A 7E F5

TEST95 KP1816BE48: B9 45 72 8B E5 16 CA 2C 94 59

TEST95 KP1816BE51: 7A E9 F5 72 EA ES D5 CA AB 94

Для получения этих последовательностей использовался производящий полином вида CF(2)=210013F.

литература

1. John Wharton. Incoming test techniques for single-chip microcomputers.— Electronics Test, 1982, vol. 5, N 5, p. 62, 63, 66-68, 70.

2. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки.— М.: Мир, 1976. c.

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

УДК 621.332.3.002

КРЕМНИЕВЫЙ МОЩНЫЙ ВЫСОКОЧАСТОТНЫЙ, УСИЛИТЕЛЬНЫЙ, ЛИНЕЙНЫЙ *n*-*p*-*n*-ТРАНЗИСТОР ТИПА КТ9126А

40

38

P = 12,5 BT U = 50B

по

коэффициента передачи тока

температуры корпуса

Зависимость

h

100

50

30

Зависимости

усиления

частоты

t_{rown} = (50 ± 3)°C

250 500 750 1000 1250 f. KTy

мощности

коэффициента

U, = 108 I, = 5A

статического

K, , 06

18

17

16

150

m -30 0

OT

Предназначен для работы в линейных широкополосных передатчиках ДВ и СВ диапазонов. Изготавливается по эпитаксиально планарной технологии.

Конструктивно транзистор оформлен в металлокерамическом корпусе с винтом и лепестковыми выводами (КТ-19Б). Масса транзистора не более 30 г.

Транзистор рассчитан на эксплуатацию в диапазоне температур окружающей среды от -60 до 125°С на корпусе, при вибрационных нагрузках на ча те от 1 до 5000 Гц с ускорением до 4 многократных ударных нагрузках 150 g (длительность от 1 до 5 мс), о ночных ударных нагрузках до 150 (длительность от 0,1 до 2 мс) и ли ных нагрузках до 500 g.

характерист Основные типовые транзистора при tкорп = (25±10)°С п ведены на рисунках, а электрические раметры при той же температуре и дельно допустимые режимы эксплу ции — ниже.

характеристики транзистора в схеме с общим эмиттером

Область безопасной работы в статическом режиме при прямом смещении тран-зистора. Ограничения для активного режима: активного режима: /к max = 30 A (область I), Рк max = 330 Br (область II), за-гиб ВАХ (область III); для ре-жима отсечки: /кля = 200 мА, R56 = 10 Ом (область IV)

$P_{\kappa} = \frac{t_{n \text{ max}}}{R_{T}}$ $\Gamma_{R} = R_{T}, \ n - \kappa = 0.45^{\circ} C$ P_{km}, BT P_{km}, BT	при Рыкх = 250 Вт, 0 В (время более 1 с), «аемая мощ- к тах, в диапа- loxp(-60°С) циость, транзистора, мпературы .5°С мощность по формуле:
400 460 460 420 420 420 400 380 40 42 42 42 42 42 42 42 42 42 42	$\frac{1 \times - 1 \times opn}{r, \Pi - \kappa} BT,$ $C/BT, 1n max = 200°C.$ $\frac{K_{pp}}{16.5}, \frac{\partial b}{\partial p}$ $\frac{16.5}{15.5}, \frac{2}{300}$ $\frac{17.5}{14.5}, \frac{2}{200}$ $\frac{1}{2}$

Предельно допустимые режимы	
эксплуатации в диапазоне температур	1
от lokp = -60 до lkopn = 125°С	
Постоянное напряжение	à
коллектор-эмиттер, Uкэк max,	
при R ₃₆ ≤10 Ом, В 100	
эмиттер-база, U36 max, В 4	
Постоянный ток. А	
коллектора, /к тах	
базы. /б тах	
Напряжение питания. Ип тах. В	
Минимальная рабочая частота.	
fmin, ΜΓμ	
Максимально допустимый КСВН	
коллекторной цепи при Рвых = 250 Вт,	
$f = 1,5$ МГц, $U_n = 30$ В (время	
рассогласования не более 1 с),	
Кст U max	
Постоянная рассеиваемая мощ-	
ность коллектора, Рк тах, в диапа-	
зоне температур от lokp (-60°С)	2
до <i>t</i> корп (50°С), Вт 330	
Постоянная ВЧ мощность,	12
подаваемая на вход транзистора,	
Рых ср тах, Вт	
При увеличении температуры	
корпуса от 50 до 125°С мощность	

труктивная емкость, пФ, не более эмиттер-корпус, С1 7,5 база-корпус, Сз.....

Зависимость граничной частоты коэффициента переда-чи от тока коллектора

Зависимость коэффициента усиления по мощности от выходной мощности

Зависимости козффициента усиления по мощности и КПД коллектора от температуры корпуса

Е.И.Гантман, Ю.А.Кузнецов, Е.З.Мазель, Е.А.Никольский, Б.Л.Перельман

УДК 621.382.333:546.28

КРЕМНИЕВЫЙ ЭПИТАКСИАЛЬНО-ПЛАНАРНЫЙ СВЧ *n*-*p*-*n*-ТРАНЗИСТОР КТ9141А, КТ9141А1

Предназначен для работы в выходных каскадах видеоусилителей многократных графических дисплеев для САПР БИС. Изготавливается в двух исполнениях: в металлостеклянном корпусе с гибкими выводами КТ-2-7 и в металлокерамическом корпусе с гибкими выводами КТ-16-12. Масса транзистора 1.5 и 2 г соответственно.

Транзистор рассчитан на эксплуатацию в диапазоне температур от —60 до 85°С, при вибрационных нагрузках на частоте 1—500 Гц с ускорением 10 g, многократных ударных нагрузках 75 g (длительность 1—6 мс), одиночных нагрузках 150 g (длительность 0,1—0,2 мс) и линейных нагрузках 50 g.

Основные типовые характеристики транзистора даны на рисунках. Электрические параметры при $losp = (25 \pm 10)^{\circ}$ С и предельно допустимые режимы эксплуатации приведены ниже.

15

10

05

Зависимости емкости коллекторного перехода от напряжения коллектор-база

не более

Зависимость граничной частоты от тока коллектора

. 0,1

1.0

тока, $|h_{213}|$, при $U_{\kappa_3} = 10$ В; $I_{\kappa} = 50$ мА; j = 300 МГц, не менее 3,4

Обратный ток эмиттера, 1360,

при $U_{36} = 3$ В, мА, не более.

мА. не более.

Обратный ток коллектор-эмиттер,

Статический коэффициент передачи тока, h_{212} при $U_{K2} = 5$ В;

Модуль коэффициента передачи

Емкость коллекторного перехода, C_{κ} , пФ, при $U_{\kappa 6} = 10$ В; j = 1 МГц,

не более

.

Емкость эмиттерного перехода, C_{2} , пФ, при $U_{26} = 0$; j = 1 МГц,

 $I_{\kappa 2}R$, при $U_{\kappa 2} = 80$ В, $R_{26} = 1$ кОм,

Область безопасной работы транзисторов КТ9141А1 (статический режим) при прямом смещении транзистора

выставка

Предельно допустимые режимы эксплуатации в диапазоне температур от —60 до +85°С

КТ	9141A	KT9141A
Напряжение транзистора, В		
коллектор-база, Uк6 тах	120	120
коллектор-эмиттер, UкаRmax		
при $R_{36} = 1$ кОм	80	80
эмиттер-база, Uэб max	3	3
Постоянный ток коллектора,		
/к, мА	. 300	400
Постоянная рассеиваемая		
мощность коллектора*,		
Рк тах, Вт	3	5
Температура перехода,		
In max, °C	200	200
Внутреннее тепловое сопро-		
тивление, Rт. п.к., °C/Вт	35	30

 Для транзистора КТ9141А во всем диапазоне температур. Для транзистора КТ9141А1 в диапазоне температур корпуса от 50 до 85°С максимально допустимая постоянная рассеиваемая мощность коллектора рассчитывается по формуле:

Входная вольт-амперная ха рактеристика

Т.И.Давыдова, Ю.А.Кузнецов, А.И.Миркин, Б.Л.Перельман, Б.И.Щелчков

10—18 апреля 1990 г. в Москве состоится

ТЕЛЕКИНОРАДИОТЕХНИКА

4-я Международная

УДК 621.382.333:546.28

КРЕМНИЕВЫЙ ЛАВИННО-ПРОЛЕТНЫЙ ДИОД 4-МИЛЛИМЕТРОВОГО ДИАПАЗОНА С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ

А.К.Шухостанов, С.Ч.Аталиков, С.И.Волков, А.М.Шекихачев

Повышение выходной СВЧ мощности кремниевых лавинно-пролетных диодов (ЛПД) — одна из актуальных задач СВЧ электроники. Разработан кремниевый ЛПД 2А757 с выходной мощностью не менее 0,2 Вт в непрерывном режиме.

В отличие от разработанного ранее однопролетного ЛПД 2А749 в конструкции ЛПД 2А757 использована двухпролетная $p^+ - p - n - n^+$ структура. Области n и p формировались на подложке КЭМ 0,003 (111) в едином эпитаксиальном процессе с легированием из смеси арсина с аргоном и смеси диборана с аргоном в реакторе пониженного давления при температуре 950°С. Приконтактную область формировали низкотемпературной диффузией из твердого источника. Профиль концентрации приведен на рисунке.

Применение двухпролетной структуры, сформированной в едином эпитаксиальном процессе при пониженной температуре, позволило более чем в два раза увеличить выходную СВЧ мощность и КПД нового ЛПД 2А757 по сравнению с серийно выпускающимся аналогом 2А749.

В качестве контактно-металлизационной системы использована структура Cr (0,05 мкм) — Pt (0,2 мкм) — Au (7 мкм). Кремниевая пластина химикодинамическим способом утоньшается до

толщины 7–12 мкм. Контакты диода формируются методом двухсторонней совмещенной фотолитографии, что позволяет сократить технологический маршрут, улучшить качество готовых кристаллов и повысить процент выхода годных.

Платина с нерабочих областей удаляется ионно-химическим травлением в среде CF₄. После формирования кремниевых мезаструктур кристаллы, находящиеся на мембране из гальванического золота, представляющей собой общий металлический электрод для всех структур, разделялись жидкостным травлением.

Кристалл собирается методом термокомпрессии на золоченый медный держатель, представляющей собой цилиндр диаметром 3 мм и длиной 5 мм. Для уменьшения длины выводов и ужесточения допуска на несоосность на держателе изготавливается пьедестал диаметром 0,35 мм и высотой 0,1 мм. В качестве изолятора в конструкции данного ЛПД применяется рубиновое кольцо с размерами 0,8х0,4х0,2 мм. Соединение верхнего контакта мезакристалла с металлизированной поверхностью изолятора осуществляется золотой лентой шириной 80–100 мкм.

После сборки кристалла проводятся дотравливание мезаструктуры до оптимальных размеров стандартным методом с промежуточным контролем емкости диодов. Оптимальная емкость для данной конструкции ЛПД при U = 0составляет 1,0–1,2 пФ.

Основные параметры кремниевого ЛПД типа 2А757

Непрерывная выходная СВЧ
мощность диода, Вт
Пробивное напряжение, В
Постоянное рабочее
напряжение, В 23
Общая емкость диода, пФ 1,1
Коэффициент полезного
действия, % 6
Тепловое сопротивление
переход—корпус, °С/Вт 65
Рабочая полоса частот СВЧ
диода, ГГц

В качестве верхнего электрода диода 2А757 (в отличие от серийных кремниевых ЛПД) используется никелевый золоченый диск, изготавливаемый методом двухсторонней совмещенной фотолитографии. Применение профилированного никелевого золоченого диска вместо золотого толщиной 50 мкм позволило: уменьшить расход драгоценных металлов, стабилизировать параметры ЛПД за счет улучшения жесткости конструкции, снять ряд ограничений при монтаже ЛПД в аппаратуре.

Применение нового кремниевого ЛПД 4-мм диапазона позволит существенно улучшить характеристики СВЧ аппаратуры.

МИКРОПРОЦЕССОРНЫЕ СТРУКТУРЫ. ИНЖЕНЕРНЫЕ РЕШЕНИЯ

Б.В.Шевкопляс

Справочник. — 2-е изд., перераб. и доп. М.: Радио и связь, 1990 (II кв.). — 32 л.

Рассмотрены практические вопросы проектирования микропроцессорных устройств и систем на их основе. Приведены методы и схемы разделения и расширерия адресного пространства, примеры интерфейсных узлов, описаны методы поиска источников прерываний, примеры построения последовательных каналов связи, даны практические рекомендации по обеспечению помехозащищенности устройств. Рассмотрено более ста пятидесяти оригинальных структурных и схемных решений. В отличие от первого издания (1986 г.) повышена информативность, описаны новые технические решения. Для инженерно-технических работников, занимающихся вопросами проектирования, производства и эксплуатации средств вычислительной техники.

ВЫСОКОКАЧЕСТВЕННЫЕ ЗАЩИЩЕННЫЕ ФОТОШАБЛОНЫ ДЛЯ МИКРОЭЛЕКТРОНИКИ

По предоставляемой заказчиком исходной информации могут быть изготовлены фотошаблоны для любой фотолитографической установки.

Любой уровень сложности ИС обеспечивается надежными фотошаблонами высокого качества .

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОСТАВЛЯЕМЫХ ШАБЛОНОВ

	Промежу- точные и защищен- ные проме- жуточные шаблоны	Рабочие фотошаб- лоны
Размер стекла, мм	102,127,153	102,127,153
маскирующее по- крытие	хром	хром, окись железа
Размер рабочего по- ля, мм	квадрат 90,114,139	диаметр 76,100,150
Масштаб изображе- ния	1:1, 4:1, 5:1 10:1	1:1
Минимальный размер элемента, мкм	4,5	1,2
Максимальное откло- нение размера эле- мента, мкм. не более	±0,3	±0,15
Неровность края, мкм. не более	\pm 0,5	\pm 0,25
Количество дефект- ных модулей, %, не более	0	5
Ретушь	плоская (двойное маскиро- вание)	_
Совмещаемость в комплекте, мкм, не хуже	±0,4	±0,4
Знаки базирования и ориентации, служеб- ные элементы	по желанию заказчика	по желанию заказчика
Защита от повторяю- щихся дефектов	пелликлы с двух сторон	повторяю- щийся де- фект ис- ключается
Срок службы, не менее	2-х лет	50 контактов

Защита промежуточных шаблонов от пыли и других загрязнений, способных стать повторяющимися дефектами, осуществляется с помощью пелликлов.

Пелликлы представляют собой тонкую прозрачную оптическую мембрану, натянутую на рамку. Размеры рамок поставляемых пелликлов приведены в таблице (по желанию заказчика могут быть обеспечены и другие размеры).

Таблица

Габаритные размеры, мм	Высота стенки, мм	Ширина стенки, мм
90×100	10—12	4и3
92 ×82	4	4
72 ×82	4	4

Монтажная плоскость рамки армирована липким слоем, закрытым защитной полимерной пленкой.

Толщина опти	ческой защитно	ОЙ
пленки		0,860 мкм
Равномерности	ь толщины плен	нки
по всему полн	0	<u>+</u> 10 нм
Светопропуска	ание пленки на	длине
волны 436 нм		не менее 98%
Светостойкост	ъ пленки	
пелликла	не менее 1,5	5 млн. экспозиций
Полоса светоп	гропускания	300—600 нм

ЭЛЕКТРОНИКА ЗА РУБЕЖОМ

Оптоэлектроника

Высокие оптические и электронные характеристики многих органических полупроводников делают их перспективными для создания устройств памяти, полевых транзисторов и фотодиодов. Новый класс гетероструктур, образованных органическими и неорганическими (Si, GaAs, InP) полупроводниковыми материалами, позволяет создавать *p*-*n*-переходы с характеристиками, близкими к идеальным. Разработанный в университете шт. Южная Калифорния широкополосный фотоприемник со структурой органический материал—кремний (активная площадь 2,2х10³ см²) характеризуется высокой внешней квантовой эффективностью (85%) на длине волны 650 нм при напряжении обратного смещения 10 В. Внутренняя квантовая эффективность прибора близка к 100%. В дальнейшем предполагается уменьшить время срабатывания прибора (с 5 до 0,1 нс) за счет оптимизации его параметров.

За последние годы расширяется область исследований по созданию твердотельных передающих приборов на гидрогенизированном аморфном кремнии, которые имеют преимущества перед ПЗС-приборами на кристаллическом кремнии. ФЭП на аморфном кремнии - более компактны и дешевы по сравнению с ПЗС ФЭП, требующими сложной системы линз для фокусировки изображения. По сообщению представителя фирмы Seiko-Epson, даже если сканер, изготовленный на гидрогенизированном аморфном кремнии, используется с фокусирующей линзой, он может быть удален всего на 18-51 мм от сканируемого документа, а не на расстояние 305 мм, требуемое для ПЗС-устройств. Кроме того, благодаря очень высокой чувствительности приборы на аморфном кремнии работают при низкоинтенсивном и более дешевом, чем для ПЗС-приборов, источнике света, что удешевляет систему в целом. Образец фирмы Seiko-Epson представляет собой прибор, в котором на одной подложке объединены фотодиоды на карбиде кремния и поликремниевые ТПТ. Прибор обеспечивает разрешение 16 точек/мм. Образец фирмы Ovonic Imaging Systems, изготовленный по запатентованной технологии, имеет размеры 243x51x28 мм и обеспечивает разрешение 12 точек/мм.

В настоящее время ведутся интенсивные разработки оптического волокна с улучшенными физическими характеристиками (повышенными ударо-, разрыво- и изломостойкостью). Значительных успехов при создании оптического волокна с повышенной прочностью достигли специалисты фирмы Corning, модифицировавшие состав поверхностного слоя кремниевой оболочки за счет введения в него двуокиси титана. Новое волокно, получившее название Titan, имеет предел прочности на стирание на 63%, а предел усталостной прочности на 30% выше, чем у обычного оптоволокна. При этом диаметр (125 мкм) и оптические характеристики волокна те же, что и у стандартного, и оно полностью совместимо с современным оборудованием для сращивания оптического волокна. На фирме используется и другой способ увеличения механической прочности волокна - нанесение герметичного покрытия из аморфного углерода, которое препятствует проникновению влаги. Этот метод применяется и на фирме АТ&Т.

Продолжаются работы по созданию одномодового волокна, нечувствительного к изгибу, которое тре-

буется для систем дистанционного управления, волоконно-оптических датчиков, линий задержки оптических сигналов. Для создания такого волокна необходимо уменьшить диаметр области распространения основной моды, что может быть достигнуто путем увеличения разности коэффициентов преломления сердцевины и оболочки. С этой целью в разработанном специалистами фирмы Corning оптическом одномодовом волокне уменьшен диаметр сердцевины и увеличена концентрация в ней легирующих примесей. В результате диаметр области распространения основной моды составляет 6,5 и 6,0 мкм, а затухание 0,35 и 0,65 дБ/км (лучшее значение для серийно выпускаемого оптического волокна - 0,20-0,25 и 0,35-0,50 дБ/км) на длине волны 1,55 и 1,3 мкм соответственно. При этом область нулевой дисперсии смещена к длине волны 1,4 мкм.

Большой объем работ проводится в области создания волокна с минимальной дисперсией в широком диапазоне. Серийное производство такого волокна впервые налажено на фирме Philips. На длинах волн и 1,55 мкм дисперсия в нем составляет 1.31 3.5 пс/нм км; а затухание - 0,5 и 0,3 дБ/км соответственно. Поскольку дисперсия минимальна в широком диапазоне (1,285-1,6 мкм), по волокну могут одновременно передаваться сигналы на длинах волн 1,3 и 1,55 мкм. Кроме того, использование такого волокна позволяет применять в системе более дешевые полупроводниковые лазеры, что особенно важно для местных телефонных сетей. Заготовка для вытягивания волокна формируется методом плазменного осаждения на внутреннюю поверхность кварцевой трубки.

Наряду с постоянным совершенствованием методов изготовления волокна с помощью химического осаждения из паровой фазы разрабатываются принципиально новые способы получения волокна из объемного материала. Специалисты фирмы SEL (ФРГ) предложили изготавливать одномодовое волокно с затуханием 0,67 дБ/км, используя формованную заготовку. Правда, в этом случае можно получить волокно только с простым профилем распределения коэффициента преломления. Кроме того, отмечается низкая воспроизводимость его характеристик по сравнению с волокном, изготовленным путем химического осаждения из паровой фазы.

По мнению специалистов, более широкому использованию в о л о к о н н о - о п т и ч е с к и х с е т е й будет способствовать применение в них пластмассового волокна, что позволит снизить стоимость сети в расчете на один узел на 30—50%. Первая локальная сеть с передачей сигналов по пластмассовому волокну выпущена фирмой Netronix (скорость передачи сигналов 2 Мбит/с). Разрабатываются системы управления автомобилями, в которых передача информации также будет осуществляться по пластмассовому волокну.

Ведутся интенсивные разработки о п т и ч е с к и х р е ф л е к т о м е т р о в, работающих по принципу наблюдения за формой отраженного сигнала; они останутся основными устройствами тестирования волоконно-оптических систем. Лучшие серийные образцы этих устройств обеспечивают измерение расстояния с точностью 0,5 м, затухания — с точностью 0,01 дБ, максимальную дальность определения повреждения — 132 км.

Устройства непосредственной обработки оптических сигналов (в том числе переключатели, усилители и регенераторы) перспективны для применения в быстродей-

ствующих ВОЛС большой протяженности (например, подводных), а также в когерентных ВОЛС, благодаря низкому уровню шумов. Специалисты фирмы British Telecom впервые продемонстрировали полностью оптическое ус ройство переключения коротких световых импульсов - солитонов. Переключатель представляет собой замкнутый контур на основе оптического волокна, сохраняющего поляризацию оптического сигнала, длиной 100 м. Солитон длительностью 0,4 пс вводится в контур через линзу и волоконно-оптический ответвитель с разделением каналов 76:24, позволяющий контролировать мощность входного сигнала. Входная и выходная ветви переключателя соединены сплавным волоконно-оптическим ответвителем с разделением сигналов 58:42. В результате 42% энергии входного сигнала передается в контуре в одном направлении и остальные 58% - в противоположном. Поскольку контур не сбалансирован, энергия сигнала на его выходе нелинейно зависит от энергии сигнала на входе. В этом случае энергия солитона, при которой происходит почти полное его переключение (пропускание контура 93%), может достигать 46 пДж. Новое устройство может стать основной логической ячейкой оптических элементов обработки информации.

Разработанный на фирме BT&D полностью о п т ич е с к и й GaAlInP – л а з е р ны й у с и л и т е л ь типа SOA 1100 характеризуется коэффициентом усиления 10 дБ в обоих направлениях. Предусмотрены устройства, рассчитанные на длины волн 1,3 и 1,55 мкм. Ширина полосы усилителя равна 0,04 мкм. Устройство предназначено для систем передачи данных, работающих на частоте 265 МГц. При подаче соответствующего смещения усилитель может выполнять функции быстродействующего усилителя.

В современных оптоэлектронных регенераторах для протяженных ВОЛС восстановление тактовых импульсов и регенерации сигналов осуществляется после преобразования оптического сигнала в электрический. Поэтому схема регенератора для системы передачи данных со скоростью 1,7 Гбит/с может содержать около 100 активных устройств и занимать плату размером 30х30 см, тогда как число активных элементов в эквивалентном оптическом регенераторе, выполненном в виде одной ОЭИС, не будет превышать 10. Так, разработанный специалистами фирмы АТ&Т первый полностью оптический регенератор состоит всего из трех активных элементов — возбуждающего лазера и двух схем на основе устройств с собственным электрооптическим эффектом. Одна схема предназначена для восстановления тактовых импульсов, другая выполняет функции решающего устройства и может работать либо как логический вентиль, либо как бистабильный переключатель. На частоте 5 кГц усиление регенератора составляет 2 дБ.

Создание оптических систем, обеспечивающих параллельную обработку больших массивов данных при высоком быстродействии и устойчивости к электромагнитным помехам способствует разработке с ис т е м, и м и т и р у ю щ и х р а б о т у ч е л о в е ч ес к о г о м о з г а, — н е й р о к о м п ь ю т е р о в. Специалисты фирмы Mitsubishi продемонстрировали первую оптическую интегральную схему нейронной сети (32 элемента), изготовленную на подложке арсенида галлия. Площадь схемы 8х8 мм. С помощью новой схемы проведено распознавание буквенных знаков.

Микроэлектроника

Схемы выборки и хранения относятся к наиболее сложным аналого-цифровым устройствам. Побыстродействию схемы выборки и хранения подразделяются на 3 класса: малого (время выборки более 0,3 мкс), высокого (0,1 – 0,3 мкс) и сверхвысокого (менее 0,1 мкс). Уникальными параметрами среди сверхбыстродействующих монолитных биполярных приборов характеризуется схема VA 730 К фирмы VTC, которая при точности срабатывания 1% обеспечивает время выборки 0,007 мкс. Потребляемая мощность прибора равна 0,750 Вт, частота дискретизации – 50 МГц (как правило, приборы аналогичного функционального назначения работают с частотой дискретизации 35 МГц).

Большое внимание уделяется уменьшению мощности монолитных биполярных схем. Самое низкое значение (0,42 Вт) этого параметра при высоком быстродействии (0,014 мкс) достигнуто для прибора SHM-360 фирмы Datel Inc.

Наиболее высоким быстродействием характеризуются гибридные схемы выборки и хранения. Так, время выборки схемы типа АНТ1010 фирмы Addacon (выполняющей функции слежения – запоминания) равно всего 0,003 мкс при точности 1% и входном напряжении 2 В; нестабильность апертурного времени схемы -1 пс. К достоинствам схемы относится и большая величина емкостной нагрузки, которая может превышать 300 пФ. При емкостной нагрузке 340 пФ и уровне входного сигнала 4 В время выборки увеличивается до 0,011 мкс (точность – 1%), при традиционном уровне входного сигнала 2 В и емкостной нагрузке 15 пФ время выборки составляет 0,007 мкс при той же точности. Прибор АНТ1010 совместим с ЭСЛ-, ТТЛ- и КМОПсхемами. Это первая схема сверхвысокого быстродействия с такими параметрами.

Самая высокая точность для гибридных схем выборки и хранения получена на фирме Hybrid Systems. В модели HS 9716, благодаря применению технологии с компенсацией диэлектрических потерь, точность составляет 0,00075% (против 0,01% без компенсации). Однако быстродействие ее невелико (время выборки равно 10 мкс при уровне входного сигнала 20 В).

В настоящее время началась разработка ИС в ыборки и хранения по КМОП-технологии. обеспечивающей достаточно высокое быстродействие при малой потребляемой мощности. Первую такую схему типа CS 3112 выпустила фирма Crystal (потребляемая мощность — всего 0,2 Вт, что более чем в два раза меньше, чем у обычных монолитных и гибридных ИС). Важным достоинством схемы является возможность работы от источника питания на напряжение (однако, фирмой Teledyne выпущена гибридная ±5 B схема типа ТР4867, работающая от источников питания на напряжение ±15 и ±5 В). На кристалле со схемой расположены также микроконтроллер и калибровочное ОЗУ, ограничивающее сигнал ошибки до 0,007 В. Схема CS 3112 может работать также в режиме слежения — запоминания и включаться в АЦП независимо от микропроцессора или совместно с ним.

Разработанный фирмой Intel новый 64-разрядный микропроцессор модели 80860 по своей производительности сопоставим с суперЭВМ Gray-1. Основным элементом нового процессора является 32-разрядный RISC-процессор — ядро с четырехкаскадной конвейерной архитектурой, работающий с целыми числами и управляющий основными операциями системы. Процессор связан 64-разрядной шиной команд с 64-разрядным процессором с плавающей запятой (с отдельными 64-разрядными сумматором умножителем). Эта шина обеспечивает передачу 32-разрядных целочисленных команд и 32-разрядных команд с плавающей запятой, выполняемых обоими процессорами одновременно за один тактовый цикл. Скорость передачи равна 320 Мбайт/с. RISC-процессор работает с 76 командами, из которых 34 предназначены для адресации процессора с плавающей запятой.

Дайджест "Экспресс-информации" ЦНИИ "Электроника" № 116, 130, 143, 148, 152, 158, 159/160, 166, 170, 176, 187.

«ЛИЦЕНЗИИ, ПАТЕНТЫ, НОУ-ХАУ»

ТЕХНОЛОГИЯ ПРЕЦИЗИОННОЙ АЛМАЗНОЙ ШЛИФОВКИ И ПОЛИРОВКИ СТЕКЛЯННЫХ ПЛАСТИН

Технология, включающая 3 изобретения, позволяет обрабатывать тонкие изделия с относительной толщиной (отношение толщины к максимальной стороне) 0,02...0,03 с ПОВЫ-ШЕННЫМИ ТРЕБОВАНИЯМИ К НЕПЛОСКО-СТНОСТИ И ЧИСТОТЕ обрабатываемой поверхности.

Технология освоена в производстве прецизионных заготовок для фотошаблонов и пластин для жидкокристаллических индика-TODOB.

Шероховатость	поверх ности:
на I переходе	R ₂ = 0,42 мкм

R_a = 0,12 мкм. на II переходе

ЗНАЧИТЕЛЬНОЕ СНИЖЕНИЕ **ЭНЕРГОЗАТРАТ!**

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ МЕТОДОМ КОМБИНИРОВАННОЙ РАСКАТКИ

Включающая 4 изобретения технология позволяет изготавливать СЛОЖНОПРОФИЛЬ-НЫЕ ДЕТАЛИ из черных и цветных металлов и сплавов размером до 400 мм с минимальными припусками на финишную обработку.

Обеспечивается повышенная прочность и износоустойчивость, вакуумная плотность, высокая точность размеров, увеличение коэффициента использования материала, стойкости оснастки и инструмента, снижение энергозатрат.

СПОСОБ ДВУКРАТНОЙ ДОВОДКИ ПЛОСКИХ ИЗДЕЛИЙ И КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ АБРАЗИВНОГО ИНСТРУМЕНТА

Способ, включающий 2 изобретения, позволяет изготавливать плоские металлические детали с высокой чистотой поверхности (12 класс).

Шероховатость поверхности $R_a = 0,012 \text{ MKM}.$

Неплоскостность - 0,4 мкм

Операции предварительной и окончательной доводки осуществляются на одном станке, Процесс экологически чист и безвреден

для здоровья. Способ может быть внедрен на любом

предприятии, имеющем станки для плоской доводки типа ЖК 14-09.

АВТОМАТИЗИРОВАННАЯ ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ МЕЛКОСТРУКТУРНЫХ ДЕТАЛЕЙ МЕТОДОМ ЭЛЕКТРОЭРОЗИИ

Обеспечивает прецизионное изготовление мелкоструктурных деталей в электронном, химическом, инструментальном и других производствах.

ГАРАНТИРУЕТСЯ высокая точность и воспроизводимость независимо от свойств обрабатываемых металлов, включая закаленную сталь и твердые сплавы; возможность изготовления деталей сложной формы; высокая производительность.

В разработке использованы 19 ИЗОБРЕ-ТЕНИЙ И НОУ-ХАУ.

Патентуется в США, Англии, Франции, Италии, ФРГ и других странах. Япония и ВНР закупили лицензии на производство маркирующих микроклейм этим методом.

> Для автомобильных, тракторных, авиационных двигателей предназначен

ФИЛЬТР ОЧИСТКИ МАСЛА В ДВИГАТЕЛЯХ ВНУТРЕННЕГО СГОРАНИЯ

Разборная конструкция позволяет использовать фильтр МНОГОКРАТНО с периодической заменой фильтрующего элемента и уплотнений.

Корпус фильтра - тонкостенный, штампованный, аналогичный неразборным фильтрам разового использования.

Прост в сборке и обслуживании, надежен в эксплуатации. Создан на основе двух изобретений, патентуемых в Японии, ГДР, ЧССР.

АБРАЗИВНАЯ КОМПОЗИЦИЯ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Обеспечивает ТОНКОЕ ШЛИФОВАНИЕ ПЛОСКИХ И СФЕРИЧЕСКИХ ПОВЕРХНО-СТЕЙ СТЕКЛОИЗДЕЛИЙ.

По абразивным свойствам превосходит пемзу Анийского месторождения и может конкурировать с лучшими зарубежными абразивными материалами.

ШЕРОХОВАТОСТЬ обработанной поверхности R_a = 0,015-0,04 мкм. Композиция освоена в производстве экранов кинескопов. Ее расход в два раза ниже, шлифующая способность в 2-3 раза выше, содержание царапающих примесей в 50 раз меньше, чем пемзы. Состав композиции – ИЗОБРЕТЕНИЕ.

Соотношение зернового состава компонентов и технология измельчения — НОУ-ХАУ.

подробную информацию вы получите из выпусков нового издания цнии «электроника»

. «ЛИЦЕНЗИИ, ПАТЕНТЫ, НОУ-ХАУ» ____

НОВАЯ АППАРАТУРА ДЛЯ КОНЦЕРТНЫХ ЗАЛОВ И ДИСКОТЕК

СОЗДАНА НА ОСНОВЕ СОВРЕМЕННОЙ ЭЛЕМЕНТНОЙ БАЗЫ, НАДЕЖНА, ПРОСТА В ЭКСПЛУАТАЦИИ

СИСТЕМА ИЗ 3-Х УСИЛИТЕЛЕЙ «ЭЛЕКТРОНИКА УМ-001» С МИКШЕРНЫМ ПУЛЬТОМ «ЭЛЕКТРОНИКА ПМ-001»

Смешение и высококачественное усиление сигналов Тончайшая десятиполосная регулировка тембра Управление сигналами 9 источников звучания

Научно-исследовательский институт «АККОРД» предлагает устройства преобразования сигналов

По сравнению с аналогами УПС обладают широким диапазоном допустимых значений климатических и механических воздействий, высокой надежностью, малыми габаритными размерами, расширенными эксплуатационными возможностями, повышенной помехоустойсоответствуют ЧИВОСТЬЮ И уровню лучших зарубежных образцов.

УПС предназначены для мультиплексоров каналов передачи данных, работы с персональными компьютерами и другими видами терминальных устройств.

> Широкий диапазон скоростей от 300 до 48000 бит/с, соответствие рекомендациям МККТТ V.21, V.23, V.26 бис, V.27 бис, высокая надежность позволяют применять УПС для построения автоматизированных узлов, комплексов, трактов управления систем связи, сбора, обработки и распределения информации, для оснащения сетей передачи данных различного назначения, систем телеобработки данных унифицированными техническими средствами с улучшенными тактико-техническими показателями.

> Для ведения служебных переговоров на арендованных каналах связи разработаны абонентские и групповые переговорно-вызывные устройства (УПВА и УПВГ), обеспечивающие формирование тонального вызова и преобразование его на приеме в индукторный, а также питание микрофонных цепей телефонного аппарата.

> > С предложениями по вопросам формирования портфеля заказов и включения в план производства обращаться по адресу: 257000, г. Черкассы, ул. Одесская, 8, НИИ «Аккорд». Телефон для справок: 45-73-00.